Binary ↘ Double: The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 011 1111 1111 - 0001 1100 0110 1010 0111 1110 1111 1001 1101 1011 0010 0100 0100 Converted and Written as a Base Ten Decimal System Number (as a Double)

0 - 011 1111 1111 - 0001 1100 0110 1010 0111 1110 1111 1001 1101 1011 0010 0100 0100: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
011 1111 1111


The last 52 bits contain the mantissa:
0001 1100 0110 1010 0111 1110 1111 1001 1101 1011 0010 0100 0100


2. Convert the exponent from binary (from base 2) to decimal (in base 10).

The exponent is allways a positive integer.

011 1111 1111(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =


512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =


1,023(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023,

that is due to the 11 bit excess/bias notation.


The exponent, adjusted = 1,023 - 1023 = 0


4. Convert the mantissa from binary (from base 2) to decimal (in base 10).

The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).


0001 1100 0110 1010 0111 1110 1111 1001 1101 1011 0010 0100 0100(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 0 × 2-30 + 0 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 1 × 2-39 + 1 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0 =


0.062 5 + 0.031 25 + 0.015 625 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 =


0.111 000 000 000 005 094 591 415 399 918 332 695 960 998 535 156 25(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =


(-1)0 × (1 + 0.111 000 000 000 005 094 591 415 399 918 332 695 960 998 535 156 25) × 20 =


1.111 000 000 000 005 094 591 415 399 918 332 695 960 998 535 156 25 × 20 =


1.111 000 000 000 005 094 591 415 399 918 332 695 960 998 535 156 25

0 - 011 1111 1111 - 0001 1100 0110 1010 0111 1110 1111 1001 1101 1011 0010 0100 0100 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 1.111 000 000 000 005 094 591 415 399 918 332 695 960 998 535 156 25(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

The latest 64 bit double precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, double)

The number 0 - 100 0000 0011 - 0010 0110 0110 0110 0110 0110 0000 0000 0000 0000 0000 0000 0000 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:55 UTC (GMT)
The number 0 - 100 0001 0101 - 1000 0100 0110 1111 0111 0111 0001 0001 1111 0011 0110 1010 1010 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 1 - 100 0000 1000 - 1111 1111 1001 1000 0000 0000 0000 0000 0000 0000 0000 0001 1110 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 0 - 100 0001 1100 - 0001 1101 0001 1001 1010 1010 0110 1110 1111 0001 1100 0110 1101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 0 - 100 0000 0100 - 1101 1100 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 0 - 100 0000 0000 - 0000 1100 1001 0000 1111 1101 1010 1010 0010 0010 0001 1001 1011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 0 - 100 1100 0011 - 0111 1111 0110 1001 1010 0001 0011 1011 0001 0010 1011 0110 0010 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 0 - 100 0000 0011 - 0111 1001 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011 1111 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 1 - 100 0000 0000 - 0010 0110 0010 1001 1111 1110 0000 0000 0000 0000 0000 0100 0100 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
The number 1 - 100 0100 1100 - 1101 0010 0101 1101 1011 1011 1001 0111 1111 0011 1111 1001 1101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 01:54 UTC (GMT)
All 64 bit double precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (double)

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)