64 bit double precision IEEE 754 binary floating point number 0 - 011 1111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 011 1111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 1111 1110


The last 52 bits contain the mantissa:
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

011 1111 1110(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =


512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 =


1,022(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,022 - 1023 = -1

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111(2) =

1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5) × 2-1 =


1.999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5 × 2-1 =


0.999 999 999 999 999 888 977 697 537 484 345 957 636 833 190 917 968 75

0 - 011 1111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


0.999 999 999 999 999 888 977 697 537 484 345 957 636 833 190 917 968 75(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 011 1111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 0.999 999 999 999 999 888 977 697 537 484 345 957 636 833 190 917 968 75 Jul 08 03:32 UTC (GMT)
0 - 100 0001 1011 - 1000 0101 1101 1010 0101 0110 1011 0000 1010 0001 0100 1010 1110 = 408 790 379.039 378 046 989 440 917 968 75 Jul 08 03:10 UTC (GMT)
0 - 011 1101 1001 - 0000 0011 1101 0101 0101 0101 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 003 692 453 677 886 509 133 543 313 510 017 469 525 337 219 238 281 25 Jul 08 03:10 UTC (GMT)
0 - 100 0001 0110 - 0000 1001 0110 0100 1101 0101 1010 1100 0110 0111 1110 1111 0100 = 8 696 426.836 730 457 842 350 006 103 515 625 Jul 08 03:01 UTC (GMT)
1 - 100 0000 0110 - 1110 0111 1000 0111 0010 0111 0000 0000 0000 0000 0000 0000 0000 = -243.763 969 421 386 718 75 Jul 08 03:00 UTC (GMT)
0 - 111 1111 0000 - 0000 0000 0000 0000 0011 1111 0000 0111 1010 1110 0001 0100 0000 = 5 486 144 679 507 641 409 794 658 457 588 129 439 150 701 058 632 804 178 184 486 391 214 724 452 103 028 833 746 334 646 986 852 996 358 520 264 707 948 180 188 214 062 997 583 640 142 575 503 341 412 730 959 843 431 667 192 571 145 468 440 716 699 784 488 125 980 885 784 371 204 217 586 454 332 443 102 722 343 336 736 430 982 210 463 158 645 248 953 055 692 406 538 673 218 051 253 832 742 244 188 160 Jul 08 02:51 UTC (GMT)
1 - 100 1100 1100 - 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 0000 = -92 559 631 349 317 693 721 053 283 428 559 145 536 795 620 813 586 901 720 104 960 Jul 08 02:49 UTC (GMT)
0 - 100 0000 0000 - 1001 1101 1001 1001 1100 0000 0000 0000 0000 0000 0000 0000 0000 = 3.231 254 577 636 718 75 Jul 08 02:39 UTC (GMT)
1 - 000 1000 1000 - 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 120 587 030 737 169 006 233 390 313 169 074 730 780 8 Jul 08 02:26 UTC (GMT)
1 - 100 0100 1010 - 1000 0100 0000 0101 0100 0001 1000 0001 0101 1000 0100 1000 0000 = -57 261 723 413 273 175 392 256 Jul 08 02:19 UTC (GMT)
0 - 100 0001 1010 - 1111 0011 0101 0111 0001 1100 0111 1100 0000 1000 0010 0010 1000 = 261 798 115.875 993 013 381 958 007 812 5 Jul 08 02:04 UTC (GMT)
0 - 011 1010 0000 - 0100 1001 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 032 448 067 703 036 149 652 287 116 376 670 855 462 729 936 569 132 860 313 402 488 827 705 383 300 781 25 Jul 08 01:50 UTC (GMT)
1 - 101 1100 1010 - 0001 0010 0110 0011 1000 0010 1010 1111 0101 0010 1010 1000 0010 = -1 595 490 736 029 241 154 837 177 729 981 154 941 948 596 263 229 714 338 765 839 157 038 697 237 824 497 339 153 227 557 953 318 823 221 288 655 574 310 275 200 659 640 852 120 862 720 Jul 08 01:21 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)