64 bit double precision IEEE 754 binary floating point number 0 - 011 1111 1110 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1011 0001 1000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 011 1111 1110 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1011 0001 1000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 1111 1110


The last 52 bits contain the mantissa:
1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1011 0001 1000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

011 1111 1110(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =


512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 =


1,022(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,022 - 1023 = -1

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1011 0001 1000(2) =

1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 1 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0.5 + 0 + 0 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0 + 0 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =


0.5 + 0.062 5 + 0.007 812 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =


0.570 796 326 794 782 871 161 260 118 242 353 200 912 475 585 937 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.570 796 326 794 782 871 161 260 118 242 353 200 912 475 585 937 5) × 2-1 =


1.570 796 326 794 782 871 161 260 118 242 353 200 912 475 585 937 5 × 2-1 =


0.785 398 163 397 391 435 580 630 059 121 176 600 456 237 792 968 75

0 - 011 1111 1110 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1011 0001 1000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


0.785 398 163 397 391 435 580 630 059 121 176 600 456 237 792 968 75(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 011 1111 1110 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1011 0001 1000 = 0.785 398 163 397 391 435 580 630 059 121 176 600 456 237 792 968 75 Dec 05 18:09 UTC (GMT)
0 - 100 0000 0001 - 0001 1000 0100 1110 0111 1001 0000 1001 1100 0110 0001 0101 0011 = 4.379 789 599 938 095 356 890 244 147 507 473 826 408 386 230 468 75 Dec 05 18:06 UTC (GMT)
0 - 100 0000 0010 - 0010 1100 1000 1011 0100 0000 0000 0000 0000 0000 0000 0000 0000 = 9.391 998 291 015 625 Dec 05 18:05 UTC (GMT)
0 - 100 1000 0100 - 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 12 590 447 576 074 723 148 144 860 474 975 423 823 872 Dec 05 18:05 UTC (GMT)
0 - 100 0100 0000 - 0110 0010 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 51 070 819 774 381 424 640 Dec 05 18:04 UTC (GMT)
0 - 100 0000 0110 - 0100 0010 0110 0111 0000 1101 1101 1111 0000 1000 0111 1010 1100 = 161.201 277 704 033 941 517 991 479 486 227 035 522 460 937 5 Dec 05 18:03 UTC (GMT)
1 - 011 1111 1110 - 0111 1111 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0.749 511 718 75 Dec 05 18:02 UTC (GMT)
0 - 011 1111 1110 - 0010 1110 1110 1001 1111 1111 0000 1100 1011 1010 1111 1001 0110 = 0.591 628 999 999 999 960 479 613 037 023 227 661 848 068 237 304 687 5 Dec 05 18:02 UTC (GMT)
0 - 100 0000 0100 - 0001 0010 0001 1011 1101 0111 1110 1100 0011 1011 0100 0000 0000 = 34.263 595 433 767 477 516 084 909 439 086 914 062 5 Dec 05 18:02 UTC (GMT)
1 - 000 0011 1000 - 0000 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 845 508 526 878 785 3 Dec 05 18:02 UTC (GMT)
0 - 000 1111 1111 - 1010 1111 0010 1011 0000 0100 0001 1000 1001 0011 0111 0100 1011 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 084 850 560 146 701 382 824 141 723 479 970 269 650 096 049 728 970 658 936 129 699 217 339 331 179 9 Dec 05 18:01 UTC (GMT)
0 - 001 0100 1000 - 1110 0111 1110 0101 0000 0011 1101 1000 1101 0101 1001 1001 0001 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 011 594 153 627 453 949 267 032 854 054 362 132 395 158 880 737 144 003 332 078 574 284 473 788 609 032 929 165 407 963 319 108 54 Dec 05 18:01 UTC (GMT)
0 - 001 1110 1100 - 0000 1000 1111 1000 1011 1111 1001 1001 1010 0011 0100 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 147 242 026 457 374 844 424 238 367 545 587 085 401 641 353 259 029 027 059 408 788 033 462 512 049 353 866 227 431 115 895 356 343 088 323 294 284 437 620 576 914 218 117 893 839 141 608 421 666 5 Dec 05 18:01 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)