64 bit double precision IEEE 754 binary floating point number 0 - 011 1111 1110 - 0101 0110 0000 0100 0001 1000 1001 0011 0111 0100 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 011 1111 1110 - 0101 0110 0000 0100 0001 1000 1001 0011 0111 0100 0000 0000 0000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 1111 1110


The last 52 bits contain the mantissa:
0101 0110 0000 0100 0001 1000 1001 0011 0111 0100 0000 0000 0000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

011 1111 1110(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =


512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 =


1,022(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,022 - 1023 = -1

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0101 0110 0000 0100 0001 1000 1001 0011 0111 0100 0000 0000 0000(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 1 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0.25 + 0 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.25 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.000 061 035 156 25 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 =


0.335 999 999 999 330 611 899 495 124 816 894 531 25(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.335 999 999 999 330 611 899 495 124 816 894 531 25) × 2-1 =


1.335 999 999 999 330 611 899 495 124 816 894 531 25 × 2-1 =


0.667 999 999 999 665 305 949 747 562 408 447 265 625

0 - 011 1111 1110 - 0101 0110 0000 0100 0001 1000 1001 0011 0111 0100 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


0.667 999 999 999 665 305 949 747 562 408 447 265 625(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 011 1111 1110 - 0101 0110 0000 0100 0001 1000 1001 0011 0111 0100 0000 0000 0000 = 0.667 999 999 999 665 305 949 747 562 408 447 265 625 Aug 21 08:21 UTC (GMT)
0 - 111 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = SNaN, Signalling Not a Number Aug 21 08:19 UTC (GMT)
0 - 100 0001 0100 - 0100 0010 1101 0010 1011 0100 0000 0100 0001 1000 1001 0011 0111 = 2 644 566.501 999 999 862 164 258 956 909 179 687 5 Aug 21 08:17 UTC (GMT)
1 - 100 0000 0111 - 1010 0011 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -419.625 Aug 21 08:16 UTC (GMT)
0 - 100 0001 1100 - 1000 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 832 569 344 Aug 21 08:15 UTC (GMT)
0 - 000 0000 0010 - 0101 1100 1010 0011 1110 1010 1111 1001 1011 0100 0111 0000 1101 = 0 Aug 21 08:13 UTC (GMT)
0 - 000 0000 0000 - 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 = 0 Aug 21 08:12 UTC (GMT)
1 - 100 0000 0000 - 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -2.687 5 Aug 21 08:11 UTC (GMT)
1 - 100 0110 0000 - 1000 0000 0101 0011 1010 1010 0111 1101 0101 0111 1101 1010 1001 = -237 886 779 457 800 296 442 187 743 232 Aug 21 08:11 UTC (GMT)
0 - 100 0000 0111 - 0010 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 289 Aug 21 08:09 UTC (GMT)
1 - 011 0001 0001 - 0010 0010 0110 1110 0000 1111 1100 0010 1010 0000 1111 1000 0000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 568 398 654 977 851 345 478 308 107 070 896 756 682 140 736 948 832 947 920 766 539 998 406 194 102 091 444 339 876 418 387 482 576 228 598 937 807 122 852 980 035 441 627 359 707 873 042 170 350 573 961 604 922 930 232 637 861 419 631 164 494 603 581 260 889 768 600 463 867 187 5 Aug 21 08:09 UTC (GMT)
0 - 011 1110 1100 - 1111 1111 0101 0011 1000 1111 0000 0000 0000 0000 0000 0000 0000 = 0.000 003 809 678 560 173 779 260 367 155 075 073 242 187 5 Aug 21 08:07 UTC (GMT)
0 - 000 0000 0000 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0 Aug 21 08:07 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)