64 Bit IEEE 754 Binary to Double: Convert 0 - 011 1111 1100 - 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0010, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 011 1111 1100 - 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0010: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
011 1111 1100
The last 52 bits contain the mantissa:
1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 1100(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 0 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 =
1,020(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,020 - 1023 = -3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0010(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0.5 + 0.25 + 0 + 0.062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.5 + 0.25 + 0.062 5 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.812 500 000 000 018 207 657 603 852 567 262 947 559 356 689 453 125(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.812 500 000 000 018 207 657 603 852 567 262 947 559 356 689 453 125) × 2-3 =
1.812 500 000 000 018 207 657 603 852 567 262 947 559 356 689 453 125 × 2-3 =
0.226 562 500 000 002 275 957 200 481 570 907 868 444 919 586 181 640 625
0 - 011 1111 1100 - 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0010 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0.226 562 500 000 002 275 957 200 481 570 907 868 444 919 586 181 640 625(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.