Convert 0 - 011 1111 1100 - 0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0111, 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, to Decimal
0 - 011 1111 1100 - 0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0111: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
0 - 011 1111 1100 - 0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0111, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
011 1111 1100
The last 52 bits contain the mantissa:
0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0111
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 1100(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 0 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 =
1,020(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,020 - 1023 = -3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0111(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 1 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 0 × 2-30 + 0 × 2-31 + 1 × 2-32 + 1 × 2-33 + 0 × 2-34 + 0 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 0 × 2-39 + 1 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0.25 + 0 + 0.062 5 + 0.031 25 + 0 + 0 + 0.003 906 25 + 0.001 953 125 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.25 + 0.062 5 + 0.031 25 + 0.003 906 25 + 0.001 953 125 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.350 000 000 000 002 975 397 705 995 419 528 335 332 870 483 398 437 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.350 000 000 000 002 975 397 705 995 419 528 335 332 870 483 398 437 5) × 2-3 =
1.350 000 000 000 002 975 397 705 995 419 528 335 332 870 483 398 437 5 × 2-3 = ...
= 0.168 750 000 000 000 371 924 713 249 427 441 041 916 608 810 424 804 687 5
0 - 011 1111 1100 - 0101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 0111, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = 0.168 750 000 000 000 371 924 713 249 427 441 041 916 608 810 424 804 687 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.