1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
011 1111 0110
The last 52 bits contain the mantissa:
1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 0110(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 0 + 4 + 2 + 0 =
512 + 256 + 128 + 64 + 32 + 16 + 4 + 2 =
1,014(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,014 - 1023 = -9
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0101(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0.5 + 0.25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.25 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.750 000 000 000 011 768 364 061 026 659 328 490 495 681 762 695 312 5(10)
= 0.003 417 968 750 000 022 985 086 056 692 694 000 957 999 378 442 764 282 226 562 5
0 - 011 1111 0110 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0101 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0.003 417 968 750 000 022 985 086 056 692 694 000 957 999 378 442 764 282 226 562 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.