Binary ↘ Double: The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 011 1111 0100 - 0110 0011 0100 0010 1110 0100 0010 0101 0001 0101 1000 0000 1110 Converted and Written as a Base Ten Decimal System Number (as a Double)
0 - 011 1111 0100 - 0110 0011 0100 0010 1110 0100 0010 0101 0001 0101 1000 0000 1110: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
011 1111 0100
The last 52 bits contain the mantissa:
0110 0011 0100 0010 1110 0100 0010 0101 0001 0101 1000 0000 1110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 0100(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 0 + 4 + 0 + 0 =
512 + 256 + 128 + 64 + 32 + 16 + 4 =
1,012(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,012 - 1023 = -11
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0110 0011 0100 0010 1110 0100 0010 0101 0001 0101 1000 0000 1110(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0.125 + 0 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.25 + 0.125 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 238 418 579 101 562 5 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.387 739 428 571 424 848 968 263 177 084 736 526 012 420 654 296 875(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.387 739 428 571 424 848 968 263 177 084 736 526 012 420 654 296 875) × 2-11 =
1.387 739 428 571 424 848 968 263 177 084 736 526 012 420 654 296 875 × 2-11 =
0.000 677 607 142 857 141 039 535 284 754 435 906 506 842 002 272 605 895 996 093 75
0 - 011 1111 0100 - 0110 0011 0100 0010 1110 0100 0010 0101 0001 0101 1000 0000 1110 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0.000 677 607 142 857 141 039 535 284 754 435 906 506 842 002 272 605 895 996 093 75(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 64 bit double precision IEEE 754 binary floating point standard representation numbers: