64 bit double precision IEEE 754 binary floating point number 0 - 011 1110 1000 - 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 011 1110 1000 - 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 1110 1000


The last 52 bits contain the mantissa:
0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

011 1110 1000(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 0 + 8 + 0 + 0 + 0 =


512 + 256 + 128 + 64 + 32 + 8 =


1,000(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,000 - 1023 = -23


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.062 5 + 0.007 812 5 =


0.070 312 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.070 312 5) × 2-23 =


1.070 312 5 × 2-23 =


0.000 000 127 591 192 722 320 556 640 625

Conclusion:

0 - 011 1110 1000 - 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

0.000 000 127 591 192 722 320 556 640 625(10)

More operations of this kind:

0 - 011 1110 1000 - 0001 0001 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ?

0 - 011 1110 1000 - 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 011 1110 1000 - 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 127 591 192 722 320 556 640 625 Nov 29 11:05 UTC (GMT)
1 - 011 1111 1110 - 1101 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = -0.937 499 999 999 999 888 977 697 537 484 345 957 636 833 190 917 968 75 Nov 29 11:04 UTC (GMT)
0 - 001 0111 0101 - 0010 1110 1010 0001 0111 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 253 032 154 757 258 593 849 972 314 972 845 358 411 626 398 724 215 356 380 971 042 201 462 786 678 406 779 951 991 129 773 810 105 553 810 211 132 8 Nov 29 11:04 UTC (GMT)
0 - 100 0001 1100 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 805 306 368 Nov 29 11:01 UTC (GMT)
0 - 100 0010 0001 - 1110 1101 0100 0111 1010 1110 0001 0100 0111 1010 1110 0001 0100 = 33 103 460 433.919 998 168 945 312 5 Nov 29 11:01 UTC (GMT)
1 - 100 0000 0000 - 1011 1011 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -3.462 890 625 Nov 29 11:00 UTC (GMT)
0 - 100 0011 0000 - 0001 1100 0011 0111 1001 0011 0111 1110 0000 1000 0000 0000 0000 = 625 000 000 000 000 Nov 29 10:59 UTC (GMT)
0 - 011 1111 1110 - 0111 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.749 023 437 5 Nov 29 10:59 UTC (GMT)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0001 = 0 Nov 29 10:59 UTC (GMT)
0 - 100 1010 1101 - 1110 0100 1010 1000 1001 0100 1010 0101 0011 0001 1001 0100 1100 = 45 333 069 940 373 986 391 476 432 776 396 710 987 832 706 377 711 616 Nov 29 10:58 UTC (GMT)
0 - 101 1111 0000 - 0011 0010 0110 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 489 783 617 053 277 285 150 384 315 771 169 034 374 120 556 995 277 983 742 896 572 023 463 073 590 388 307 203 155 305 734 043 509 323 149 886 531 361 970 692 558 414 696 226 256 234 845 090 873 344 Nov 29 10:57 UTC (GMT)
1 - 110 0000 1010 - 1000 0000 0000 0101 0100 0001 1000 0001 0101 1000 0100 1000 0111 = -41 190 988 142 913 239 044 198 239 122 595 952 661 378 719 922 849 970 769 254 134 179 287 431 982 982 205 047 315 736 699 622 780 248 558 126 710 111 878 490 060 461 495 498 601 092 991 093 046 588 001 484 800 Nov 29 10:54 UTC (GMT)
1 - 110 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -26 815 615 859 885 194 199 148 049 996 411 692 254 958 731 641 184 786 755 447 122 887 443 528 060 147 093 953 603 748 596 333 806 855 380 063 716 372 972 101 707 507 765 623 893 139 892 867 298 012 168 192 Nov 29 10:54 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)