64 bit double precision IEEE 754 binary floating point number 0 - 011 0111 0010 - 0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1111 converted to decimal base ten (double)

64 bit double precision IEEE 754 binary floating point 0 - 011 0111 0010 - 0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1111 to decimal system (base ten) = ?

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 0111 0010


The last 52 bits contain the mantissa:
0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1111

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

011 0111 0010(2) =


0 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =


0 + 512 + 256 + 0 + 64 + 32 + 16 + 0 + 0 + 2 + 0 =


512 + 256 + 64 + 32 + 16 + 2 =


882(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 882 - 1023 = -141


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1111(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0 + 0.125 + 0 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.125 + 0.007 812 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 000 953 674 316 406 25 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.132 905 211 768 047 371 023 726 554 994 937 032 461 166 381 835 937 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.132 905 211 768 047 371 023 726 554 994 937 032 461 166 381 835 937 5) × 2-141 =


1.132 905 211 768 047 371 023 726 554 994 937 032 461 166 381 835 937 5 × 2-141 =


0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 406 409 813 369 893 493 200 770 778 859 780 899 405 371 211 220 281 861 073 071 020 671 068 696 933 441 402 027 983 385 668 114 952 603 696 416 865 569 629 450 760 658 073 704 689 741 134 643 554 687 5

0 - 011 0111 0010 - 0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1111 converted from 64 bit double precision IEEE 754 binary floating point to base ten decimal system (double) =
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 406 409 813 369 893 493 200 770 778 859 780 899 405 371 211 220 281 861 073 071 020 671 068 696 933 441 402 027 983 385 668 114 952 603 696 416 865 569 629 450 760 658 073 704 689 741 134 643 554 687 5(10)

More operations of this kind:

0 - 011 0111 0010 - 0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1110 = ?

0 - 011 0111 0010 - 0010 0010 0000 0110 0001 0011 0111 0010 0000 0011 0000 0000 0000 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 011 0111 0010 - 0010 0010 0000 0110 0001 0011 0111 0010 0000 0010 1111 1111 1111 = ? Apr 14 12:03 UTC (GMT)
0 - 100 0000 0101 - 1110 0100 0000 1001 0000 0110 1101 0111 0101 1111 1010 0010 0110 = ? Apr 14 12:02 UTC (GMT)
0 - 100 0000 1101 - 1000 1100 1000 0011 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? Apr 14 11:59 UTC (GMT)
1 - 011 1111 1100 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 = ? Apr 14 11:59 UTC (GMT)
0 - 100 0000 0101 - 0010 1000 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1011 = ? Apr 14 11:58 UTC (GMT)
1 - 011 1111 1110 - 1000 0000 0000 0000 0000 0100 0000 0010 0000 0000 0000 0000 0000 = ? Apr 14 11:58 UTC (GMT)
0 - 111 1100 0000 - 1111 1000 0011 1110 0000 1111 1000 0011 1110 0000 1111 1000 0101 = ? Apr 14 11:53 UTC (GMT)
0 - 100 0001 0111 - 0001 0010 0111 0010 0000 0011 1110 1100 0111 0101 1100 1111 0100 = ? Apr 14 11:51 UTC (GMT)
1 - 100 1100 0000 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 = ? Apr 14 11:51 UTC (GMT)
0 - 100 1010 0100 - 1001 0101 1010 1001 0101 0101 0100 1010 1010 1010 0101 0101 0001 = ? Apr 14 11:51 UTC (GMT)
1 - 110 0101 1001 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 = ? Apr 14 11:51 UTC (GMT)
0 - 111 0001 1010 - 0111 1100 1110 0110 0110 1110 0001 1000 0000 1100 0001 1010 0100 = ? Apr 14 11:50 UTC (GMT)
0 - 100 0000 0011 - 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 = ? Apr 14 11:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)