Binary ↘ Double: The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 011 0100 1001 - 0110 1001 0010 0100 1001 0010 0100 1001 0010 0100 1001 0011 0000 Converted and Written as a Base Ten Decimal System Number (as a Double)
0 - 011 0100 1001 - 0110 1001 0010 0100 1001 0010 0100 1001 0010 0100 1001 0011 0000: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
011 0100 1001
The last 52 bits contain the mantissa:
0110 1001 0010 0100 1001 0010 0100 1001 0010 0100 1001 0011 0000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 0100 1001(2) =
0 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
0 + 512 + 256 + 0 + 64 + 0 + 0 + 8 + 0 + 0 + 1 =
512 + 256 + 64 + 8 + 1 =
841(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 841 - 1023 = -182
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0110 1001 0010 0100 1001 0010 0100 1001 0010 0100 1001 0011 0000(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 0 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0.125 + 0 + 0.031 25 + 0 + 0 + 0.003 906 25 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0 + 0.000 007 629 394 531 25 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0 + 0 =
0.25 + 0.125 + 0.031 25 + 0.003 906 25 + 0.000 488 281 25 + 0.000 061 035 156 25 + 0.000 007 629 394 531 25 + 0.000 000 953 674 316 406 25 + 0.000 000 119 209 289 550 781 25 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 =
0.410 714 285 714 288 251 938 342 000 357 806 682 586 669 921 875(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.410 714 285 714 288 251 938 342 000 357 806 682 586 669 921 875) × 2-182 =
1.410 714 285 714 288 251 938 342 000 357 806 682 586 669 921 875 × 2-182 =
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 230 133 505 791 019 805 764 129 868 967 238 254 390 271 144 329 163 704 983 985 254 209 758 370 349 538 455 958 010 633 003 926 492 667 655 298 434 039 375 409 922 266 852 807 927 126 067 788 492 491 672 514 006 495 475 769 042 968 75
0 - 011 0100 1001 - 0110 1001 0010 0100 1001 0010 0100 1001 0010 0100 1001 0011 0000 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 230 133 505 791 019 805 764 129 868 967 238 254 390 271 144 329 163 704 983 985 254 209 758 370 349 538 455 958 010 633 003 926 492 667 655 298 434 039 375 409 922 266 852 807 927 126 067 788 492 491 672 514 006 495 475 769 042 968 75(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 64 bit double precision IEEE 754 binary floating point standard representation numbers: