64 bit double precision IEEE 754 binary floating point number 0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0001 converted to decimal base ten (double)

64 bit double precision IEEE 754 binary floating point 0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0001 to decimal system (base ten) = ?

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 0001 0011


The last 52 bits contain the mantissa:
0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0001

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

011 0001 0011(2) =


0 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =


0 + 512 + 256 + 0 + 0 + 0 + 16 + 0 + 0 + 2 + 1 =


512 + 256 + 16 + 2 + 1 =


787(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 787 - 1023 = -236


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0001(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 1 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =


0 + 0.25 + 0 + 0 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0 + 0 + 0 + 0.000 244 140 625 + 0 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.25 + 0.007 812 5 + 0.003 906 25 + 0.000 244 140 625 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.262 008 853 957 990 561 767 132 930 981 460 958 719 253 540 039 062 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.262 008 853 957 990 561 767 132 930 981 460 958 719 253 540 039 062 5) × 2-236 =


1.262 008 853 957 990 561 767 132 930 981 460 958 719 253 540 039 062 5 × 2-236 =


0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 011 428 347 176 081 450 948 589 173 139 837 007 110 249 165 944 975 548 230 274 271 349 810 246 401 292 659 968 549 004 301 408 057 836 250 275 761 065 512 286 734 206 426 781 574 980 978 810 529 793 108 554 220 669 923 288 185 811 289 553 728 276 047 195 322 462 357 580 661 773 681 640 625

0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0001 converted from 64 bit double precision IEEE 754 binary floating point to base ten decimal system (double) =
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 011 428 347 176 081 450 948 589 173 139 837 007 110 249 165 944 975 548 230 274 271 349 810 246 401 292 659 968 549 004 301 408 057 836 250 275 761 065 512 286 734 206 426 781 574 980 978 810 529 793 108 554 220 669 923 288 185 811 289 553 728 276 047 195 322 462 357 580 661 773 681 640 625(10)

More operations of this kind:

0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0000 = ?

0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0010 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 011 0001 0011 - 0100 0011 0001 0011 0000 0011 0010 0011 0000 0011 0001 0011 0001 = ? Jun 14 00:08 UTC (GMT)
0 - 111 0111 1100 - 0111 0110 1100 1000 1011 1111 1111 1110 1011 1100 0110 1001 1000 = ? Jun 14 00:04 UTC (GMT)
0 - 100 0000 0100 - 0001 1101 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1001 = ? Jun 14 00:01 UTC (GMT)
0 - 011 1110 0000 - 0101 1100 1111 0101 0101 0000 0011 0000 1111 0001 1100 1101 1011 = ? Jun 14 00:00 UTC (GMT)
1 - 111 1111 0000 - 0111 0000 1010 0011 1101 0111 0000 1010 0011 1101 0111 0001 1011 = ? Jun 13 23:58 UTC (GMT)
0 - 011 1010 0000 - 0100 1001 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ? Jun 13 23:58 UTC (GMT)
1 - 100 0011 1101 - 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 = ? Jun 13 23:56 UTC (GMT)
0 - 011 1110 0001 - 0111 0111 0111 0101 0101 1100 0101 1010 1101 1001 1000 0100 0111 = ? Jun 13 23:54 UTC (GMT)
1 - 001 1101 1000 - 0111 1000 1011 0001 1000 0101 1101 1110 1101 0110 1110 0011 0110 = ? Jun 13 23:54 UTC (GMT)
0 - 011 1110 0111 - 1010 1101 0111 1111 0010 1001 1010 1011 1100 1010 1111 0100 1101 = ? Jun 13 23:51 UTC (GMT)
1 - 000 0000 0110 - 0000 0001 1010 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ? Jun 13 23:50 UTC (GMT)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 1111 1111 1000 0000 0000 0010 = ? Jun 13 23:49 UTC (GMT)
0 - 110 1111 1101 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 = ? Jun 13 23:48 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)