64 Bit IEEE 754 Binary to Double: Convert 0 - 010 0000 0001 - 0000 1000 0000 1101 1111 1100 1110 0011 0001 0101 0000 1101 1111, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 010 0000 0001 - 0000 1000 0000 1101 1111 1100 1110 0011 0001 0101 0000 1101 1111: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
010 0000 0001
The last 52 bits contain the mantissa:
0000 1000 0000 1101 1111 1100 1110 0011 0001 0101 0000 1101 1111
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
010 0000 0001(2) =
0 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
0 + 512 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
512 + 1 =
513(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 513 - 1023 = -510
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0000 1000 0000 1101 1111 1100 1110 0011 0001 0101 0000 1101 1111(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0 + 0 + 0 + 0.031 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.031 25 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.031 463 437 500 000 912 550 035 536 696 668 714 284 896 850 585 937 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.031 463 437 500 000 912 550 035 536 696 668 714 284 896 850 585 937 5) × 2-510 =
1.031 463 437 500 000 912 550 035 536 696 668 714 284 896 850 585 937 5 × 2-510 =
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 307 720 230 746 001 422 170 187 137 940 861 992 334 262 200 697 678 461 984 883 419 593 633 236 664 141 059 198 997 606 052 886 721 058 762 090 605 282 416 508 864 189 954 293 914 365 323 420 384 054 956 6
0 - 010 0000 0001 - 0000 1000 0000 1101 1111 1100 1110 0011 0001 0101 0000 1101 1111 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 307 720 230 746 001 422 170 187 137 940 861 992 334 262 200 697 678 461 984 883 419 593 633 236 664 141 059 198 997 606 052 886 721 058 762 090 605 282 416 508 864 189 954 293 914 365 323 420 384 054 956 6(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.