64 bit double precision IEEE 754 binary floating point number 0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0000
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
001 1011 1100


The last 52 bits contain the mantissa:
0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0000

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

001 1011 1100(2) =


0 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 256 + 128 + 0 + 32 + 16 + 8 + 4 + 0 + 0 =


256 + 128 + 32 + 16 + 8 + 4 =


444(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 444 - 1023 = -579


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0000(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0 + 0 + 0 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0 + 0 + 0 =


0.125 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 =


0.216 968 473 685 980 711 707 088 630 646 467 208 862 304 687 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.216 968 473 685 980 711 707 088 630 646 467 208 862 304 687 5) × 2-579 =


1.216 968 473 685 980 711 707 088 630 646 467 208 862 304 687 5 × 2-579 =


0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 615 052 004 544 171 247 797 952 106 146 667 686 891 797 545 880 744 216 083 194 535 561 992 456 830 260 835 561 432 024 039 243 686 434 058 396 130 827 398 415 486 825 000 165 4

Conclusion:

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 615 052 004 544 171 247 797 952 106 146 667 686 891 797 545 880 744 216 083 194 535 561 992 456 830 260 835 561 432 024 039 243 686 434 058 396 130 827 398 415 486 825 000 165 4(10)

More operations of this kind:

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1111 = ?

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0001 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1100 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 615 052 004 544 171 247 797 952 106 146 667 686 891 797 545 880 744 216 083 194 535 561 992 456 830 260 835 561 432 024 039 243 686 434 058 396 130 827 398 415 486 825 000 165 4 Nov 29 21:50 UTC (GMT)
0 - 000 0000 0000 - 1111 1000 0011 0001 0100 0010 0001 0111 0011 1111 0000 0000 0000 = 0 Nov 29 21:49 UTC (GMT)
1 - 000 1000 1111 - 1000 0001 1100 1101 0110 1110 1001 1110 0001 1011 0000 1000 1010 = -0 Nov 29 21:49 UTC (GMT)
1 - 110 0000 1001 - 0011 0110 0110 0000 1000 0010 1101 0011 1110 1011 1010 1000 0110 = -16 645 900 607 658 626 217 943 497 130 044 187 562 548 816 100 687 156 944 735 597 087 226 872 386 620 687 440 193 913 307 856 112 982 491 407 969 395 402 999 212 084 271 752 693 501 123 687 300 603 119 140 864 Nov 29 21:45 UTC (GMT)
0 - 011 0000 0010 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0100 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 074 287 785 055 795 153 280 658 383 404 845 508 083 263 179 703 358 972 571 142 849 062 900 886 344 808 125 430 700 514 521 594 930 160 084 642 705 625 121 215 710 508 163 434 542 465 476 643 056 500 348 942 533 437 667 075 354 128 459 138 499 285 425 993 878 817 507 720 668 800 175 189 971 923 828 125 Nov 29 21:45 UTC (GMT)
0 - 100 0001 1010 - 0010 1010 1101 1010 1110 1001 1010 0010 0001 0101 1100 0011 0101 = 156 686 157.065 156 608 819 961 547 851 562 5 Nov 29 21:41 UTC (GMT)
1 - 100 0000 0010 - 1010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -13.25 Nov 29 21:40 UTC (GMT)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 = 0 Nov 29 21:40 UTC (GMT)
0 - 101 0000 1001 - 0110 0011 0101 0110 0001 0000 0000 0000 0000 0000 0000 0000 0110 = 164 580 475 415 113 944 924 105 818 390 262 347 951 647 748 231 721 933 826 214 211 026 211 041 550 794 752 Nov 29 21:39 UTC (GMT)
0 - 100 1010 1101 - 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 24 319 387 245 186 224 558 909 315 616 398 949 447 074 717 515 120 640 Nov 29 21:38 UTC (GMT)
0 - 011 1111 1011 - 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1000 = 0.099 999 999 999 999 977 795 539 507 496 869 191 527 366 638 183 593 75 Nov 29 21:36 UTC (GMT)
1 - 100 0000 1000 - 0010 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1000 = -601.599 999 999 999 454 303 178 936 243 057 250 976 562 5 Nov 29 21:34 UTC (GMT)
1 - 100 0000 0000 - 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -2.125 Nov 29 21:34 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)