64 bit double precision IEEE 754 binary floating point number 0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1011 converted to decimal base ten (double)

64 bit double precision IEEE 754 binary floating point 0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1011 to decimal system (base ten) = ?

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,

1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
001 1011 1100


The last 52 bits contain the mantissa:
0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1011


2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

001 1011 1100(2) =


0 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 256 + 128 + 0 + 32 + 16 + 8 + 4 + 0 + 0 =


256 + 128 + 32 + 16 + 8 + 4 =


444(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023,

that is due to the 11 bit excess/bias notation.


Exponent adjusted = 444 - 1023 = -579


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited).


0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1011(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0 + 0 + 0 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.125 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.216 968 473 685 979 601 484 064 005 489 926 785 230 636 596 679 687 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.216 968 473 685 979 601 484 064 005 489 926 785 230 636 596 679 687 5) × 2-579 =


1.216 968 473 685 979 601 484 064 005 489 926 785 230 636 596 679 687 5 × 2-579 =


0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 615 052 004 544 170 686 694 758 759 995 489 510 202 362 117 753 811 062 596 161 671 808 616 899 043 481 087 564 055 687 262 350 688 252 402 929 710 465 881 386 982 697 174 435 8

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1011 converted from 64 bit double precision IEEE 754 binary floating point to base ten decimal system (double) =
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 615 052 004 544 170 686 694 758 759 995 489 510 202 362 117 753 811 062 596 161 671 808 616 899 043 481 087 564 055 687 262 350 688 252 402 929 710 465 881 386 982 697 174 435 8(10)

More operations of this kind:

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1010 = ?

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1100 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 001 1011 1100 - 0011 0111 1000 1011 0011 1110 1111 0010 1011 1110 1000 1011 1011 = ? Mar 24 10:06 UTC (GMT)
0 - 110 0010 1000 - 1011 1111 0101 0000 1111 1101 0001 1111 0111 0100 1011 1010 0100 = ? Mar 24 10:03 UTC (GMT)
1 - 100 0101 1011 - 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 0001 = ? Mar 24 10:01 UTC (GMT)
0 - 000 0000 0000 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? Mar 24 09:59 UTC (GMT)
1 - 110 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? Mar 24 09:58 UTC (GMT)
1 - 011 1111 1001 - 0101 0110 1111 1011 0000 1001 0010 0000 0011 1010 0011 0001 1001 = ? Mar 24 09:56 UTC (GMT)
1 - 110 1110 1101 - 1011 0101 0110 0010 0111 0001 0000 1101 1111 1111 0000 0001 0011 = ? Mar 24 09:56 UTC (GMT)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0100 0000 1011 0100 0110 1101 0000 1000 = ? Mar 24 09:56 UTC (GMT)
0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011 = ? Mar 24 09:56 UTC (GMT)
0 - 100 0001 0110 - 0001 1101 1011 1011 0111 0111 0001 0000 0010 1111 1100 0111 0010 = ? Mar 24 09:53 UTC (GMT)
1 - 110 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? Mar 24 09:51 UTC (GMT)
0 - 100 0000 0011 - 0011 1000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1101 = ? Mar 24 09:50 UTC (GMT)
0 - 011 1111 1110 - 1011 0000 1111 1011 0010 1111 1101 0110 1101 0100 0100 1000 1101 = ? Mar 24 09:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)