Binary ↘ Double: The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 000 1000 1010 - 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010 Converted and Written as a Base Ten Decimal System Number (as a Double)
0 - 000 1000 1010 - 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
000 1000 1010
The last 52 bits contain the mantissa:
1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
000 1000 1010(2) =
0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
0 + 0 + 0 + 128 + 0 + 0 + 0 + 8 + 0 + 2 + 0 =
128 + 8 + 2 =
138(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 138 - 1023 = -885
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0.5 + 0 + 0 + 0.062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.5 + 0.062 5 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.562 500 000 000 003 996 802 888 650 563 545 525 074 005 126 953 125(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.562 500 000 000 003 996 802 888 650 563 545 525 074 005 126 953 125) × 2-885 =
1.562 500 000 000 003 996 802 888 650 563 545 525 074 005 126 953 125 × 2-885 =
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 006 057 227 193 173 902 014 288 099 628 978 522 327 653 5
0 - 000 1000 1010 - 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 006 057 227 193 173 902 014 288 099 628 978 522 327 653 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 64 bit double precision IEEE 754 binary floating point standard representation numbers: