64 bit double precision IEEE 754 binary floating point number 0 - 000 1000 1000 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0011 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 000 1000 1000 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0011
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
000 1000 1000


The last 52 bits contain the mantissa:
0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0011

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

000 1000 1000(2) =


0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 0 + 128 + 0 + 0 + 0 + 8 + 0 + 0 + 0 =


128 + 8 =


136(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 136 - 1023 = -887


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0011(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0 + 0 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.062 5 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 000 953 674 316 406 25 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.075 242 229 552 899 386 746 389 609 470 497 816 801 071 166 992 187 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.075 242 229 552 899 386 746 389 609 470 497 816 801 071 166 992 187 5) × 2-887 =


1.075 242 229 552 899 386 746 389 609 470 497 816 801 071 166 992 187 5 × 2-887 =


0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 042 077 835 535 478 484 326 610 924 742 240 823 410 8

Conclusion:

0 - 000 1000 1000 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0011
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 042 077 835 535 478 484 326 610 924 742 240 823 410 8(10)

More operations of this kind:

0 - 000 1000 1000 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0010 = ?

0 - 000 1000 1000 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0100 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 000 1000 1000 - 0001 0011 0100 0011 0001 0011 0010 0011 0011 0101 0011 0100 0011 = ? Jan 21 02:49 UTC (GMT)
0 - 000 0001 0101 - 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 = ? Jan 21 02:47 UTC (GMT)
1 - 100 0000 0101 - 1000 1101 1100 1111 0111 0110 0101 1111 1101 1000 1010 1101 1100 = ? Jan 21 02:43 UTC (GMT)
0 - 100 0001 0110 - 0100 1110 1001 1010 0111 0001 1111 1000 1100 0010 1101 1101 1011 = ? Jan 21 02:38 UTC (GMT)
0 - 100 0001 1001 - 1011 1011 1100 1001 1011 0110 1011 0001 1111 0100 1101 0100 0101 = ? Jan 21 02:37 UTC (GMT)
1 - 111 0110 1000 - 1101 0100 1001 1001 0100 0010 0001 0110 0000 1000 0000 0000 0000 = ? Jan 21 02:36 UTC (GMT)
0 - 111 1111 1110 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? Jan 21 02:35 UTC (GMT)
0 - 010 0000 1010 - 1001 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 = ? Jan 21 02:35 UTC (GMT)
1 - 100 1000 0010 - 1000 1010 0000 0101 0101 0101 0111 0101 0101 0100 0010 1110 1010 = ? Jan 21 02:34 UTC (GMT)
0 - 100 0000 0110 - 1111 1110 1000 0010 1000 1111 0101 1100 0010 1000 1111 0101 1111 = ? Jan 21 02:34 UTC (GMT)
0 - 011 1111 1101 - 0000 1111 0010 0111 1011 1011 0110 1010 1000 1111 0111 1101 1000 = ? Jan 21 02:34 UTC (GMT)
0 - 111 0101 1111 - 0101 1100 1011 1000 1010 0001 1001 0000 0001 1100 1111 0100 0011 = ? Jan 21 02:34 UTC (GMT)
0 - 100 0000 0100 - 0110 1010 0000 1011 1111 1111 1111 1111 1111 1111 1111 1111 1001 = ? Jan 21 02:32 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)