64 Bit IEEE 754 Binary to Double: Convert 0 - 000 0000 0001 - 1010 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 000 0000 0001 - 1010 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
000 0000 0001
The last 52 bits contain the mantissa:
1010 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
000 0000 0001(2) =
0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
1 =
1(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1 - 1023 = -1022
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1010 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0.5 + 0 + 0.125 + 0 + 0 + 0 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0 + 0.000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0.5 + 0.125 + 0.003 906 25 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 061 035 156 25 =
0.630 187 988 281 25(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.630 187 988 281 25) × 2-1022 =
1.630 187 988 281 25 × 2-1022 =
0
0 - 000 0000 0001 - 1010 0001 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.