1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
000 0000 0000
The last 52 bits contain the mantissa:
0010 0101 1010 1001 0001 0000 0010 0100 0000 0000 0000 0000 0001
2. Reserved bitpattern.
Notice that all the bits that make up the exponent are on 0 (clear) and at least one bit of the mantissa is set on 1 (set).
This is one of the reserved bitpatterns of the special values of: Denormalized.
Denormalized numbers are too small to be correctly represented so they approximate to zero.
Depending on the sign bit, -0 and +0 are two distinct values though they both compare as equal (0).
3. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
000 0000 0000(2) =
0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0(10)
4. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 0 - 1023 = -1023
5. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0010 0101 1010 1001 0001 0000 0010 0100 0000 0000 0000 0000 0001(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0 + 0 + 0.125 + 0 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.125 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 015 258 789 062 5 + 0.000 000 953 674 316 406 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.147 110 947 407 782 299 833 911 565 656 308 084 726 333 618 164 062 5(10)
= 0
0 - 000 0000 0000 - 0010 0101 1010 1001 0001 0000 0010 0100 0000 0000 0000 0000 0001 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.