64 bit double precision IEEE 754 binary floating point number 0 - 000 0000 0000 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 000 0000 0000 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
000 0000 0000


The last 52 bits contain the mantissa:
0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Reserved bitpattern.

Notice that all the exponent bits are on 0 (clear) and at least one of the mantissa bits is on 1 (set).

This is one of the reserved bitpatterns of the special values of: Denormalized.

Denormalized numbers are too small to be correctly represented so they approximate to zero. Depending on the sign bit, -0 and +0 are two distinct values though they both compare as equal (0).

3. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

000 0000 0000(2) =


0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0(10)

4. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 0 - 1023 = -1023


5. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.003 906 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.003 906 25 =


0.003 906 25(10)

6. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.003 906 25) × 2-1023 =


1.003 906 25 × 2-1023 =


0

Conclusion:

0 - 000 0000 0000 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

0(10)

More operations of this kind:

0 - 000 0000 0000 - 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ?

0 - 000 0000 0000 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 000 0000 0000 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0 Oct 29 07:37 UTC (GMT)
0 - 011 1111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100 = 0.999 999 999 999 999 555 910 790 149 937 383 830 547 332 763 671 875 Oct 29 07:37 UTC (GMT)
0 - 100 0000 0101 - 1001 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 100.75 Oct 29 07:37 UTC (GMT)
1 - 100 0001 1110 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -2 147 483 648 Oct 29 07:35 UTC (GMT)
0 - 100 0000 1111 - 1100 0000 0000 0000 0000 1100 0000 0000 0000 0000 0000 0000 0000 = 114 688.046 875 Oct 29 07:35 UTC (GMT)
1 - 111 1110 1101 - 1100 1011 1010 0000 1001 1000 0111 0110 0101 0100 0011 0010 0010 = -1 231 236 590 809 265 713 777 931 325 088 122 978 713 217 978 772 996 557 780 202 016 092 829 219 200 426 846 830 581 242 614 613 645 018 428 356 306 838 095 412 355 331 749 408 650 035 796 904 318 799 405 515 730 516 978 283 173 664 377 100 290 758 970 455 421 189 740 008 190 167 314 480 553 675 014 799 351 346 993 502 850 604 047 616 341 450 108 386 536 220 760 686 014 623 657 840 464 129 058 406 400 Oct 29 07:35 UTC (GMT)
0 - 011 1111 1000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.007 812 5 Oct 29 07:34 UTC (GMT)
0 - 010 1100 1000 - 1010 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 390 451 807 981 329 234 035 801 840 912 045 628 179 570 040 272 713 682 417 600 407 084 915 942 148 359 274 606 964 648 495 971 263 303 228 592 954 737 880 935 636 093 821 932 770 732 600 120 855 132 815 372 720 090 179 359 066 437 859 935 271 885 654 892 969 111 655 854 896 999 371 3 Oct 29 07:34 UTC (GMT)
0 - 100 0000 0100 - 1111 0111 1011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 = 62.962 499 999 999 998 578 914 528 479 799 628 257 751 464 843 75 Oct 29 07:34 UTC (GMT)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 = 0 Oct 29 07:32 UTC (GMT)
0 - 100 0111 1110 - 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000 0000 0000 0001 = 340 282 326 356 119 293 938 965 622 494 427 348 992 Oct 29 07:32 UTC (GMT)
0 - 100 0000 0001 - 1111 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0110 = 7.800 000 000 000 002 486 899 575 160 350 650 548 934 936 523 437 5 Oct 29 07:32 UTC (GMT)
1 - 100 1101 0110 - 1011 1110 0100 0000 0100 1110 0010 0100 0001 0100 1011 0000 0111 = -91 788 546 337 390 736 654 901 317 165 497 335 684 578 515 654 409 949 570 553 348 096 Oct 29 07:32 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)