The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 000 0000 0000 - 0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0101 Converted and Written as a Base Ten Decimal System Number (Double)

0 - 000 0000 0000 - 0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0101: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

The steps we'll go through to make the conversion:

Reserved bitpattern.

Convert the exponent from binary (from base 2) to decimal (in base 10).

Adjust the exponent.

Convert the mantissa from binary (from base 2) to decimal (in base 10).

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
000 0000 0000


The last 52 bits contain the mantissa:
0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0101


2. Reserved bitpattern.

We notice that all the bits that make up the exponent are on 0 (clear) and at least one bit of the mantissa is set on 1 (set).

This is one of the reserved bitpatterns of the special values of: Denormalized.


Denormalized numbers are too small to be correctly represented so they approximate to zero.

Depending on the sign bit, -0 and +0 are two distinct values though they both compare as equal (0).


3. Convert the exponent from binary (from base 2) to decimal (in base 10).

The exponent is allways a positive integer.

000 0000 0000(2) =


0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0(10)

4. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023,

that is due to the 11 bit excess/bias notation.


The exponent, adjusted = 0 - 1023 = -1023


5. Convert the mantissa from binary (from base 2) to decimal (in base 10).

The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).


0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0101(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 1 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.000 061 035 156 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.000 061 117 112 616 360 103 061 197 150 964 289 903 640 747 070 312 5(10)

6. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =


(-1)0 × (1 + 0.000 061 117 112 616 360 103 061 197 150 964 289 903 640 747 070 312 5) × 2-1023 =


1.000 061 117 112 616 360 103 061 197 150 964 289 903 640 747 070 312 5 × 2-1023 =


0

0 - 000 0000 0000 - 0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0101 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 0(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

Number 0 - 000 0000 0000 - 0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0100 converted from 64 bit double precision IEEE 754 binary floating point standard representation to decimal system written in base ten (double) = ?

Number 0 - 000 0000 0000 - 0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0110 converted from 64 bit double precision IEEE 754 binary floating point standard representation to decimal system written in base ten (double) = ?

Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)



A number in 64 bit double precision IEEE 754 binary floating point standard representation...

... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest 64 bit double precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, double)

The number 0 - 000 0000 0000 - 0000 0000 0000 0100 0000 0001 0101 1111 1111 1111 1111 1010 0101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:59 UTC (GMT)
The number 1 - 100 0000 0000 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1011 1101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:59 UTC (GMT)
The number 1 - 000 0000 0110 - 0000 0001 1010 1000 0000 0000 0000 0000 0000 0000 0000 0000 1111 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 1 - 100 0000 0100 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 0 - 010 0000 0111 - 0100 0000 1111 1010 1111 1011 1110 0111 1010 0100 0000 1110 0101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 0 - 100 0000 0101 - 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 1011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 0 - 111 1111 1010 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 1 - 000 0100 1110 - 1111 1110 0001 1111 0111 1101 0010 1011 0110 0000 0000 0000 0001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 1 - 101 0101 0101 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0001 1011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
The number 0 - 100 0001 1000 - 0010 0110 1111 1100 0110 1110 0000 0101 1111 1000 0001 0100 0011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 12:58 UTC (GMT)
All 64 bit double precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (double)

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal