64 bit double precision IEEE 754 binary floating point number 0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0000
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
000 0000 0000


The last 52 bits contain the mantissa:
0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0000

2. Reserved bitpattern.

Notice that all the exponent bits are on 0 (clear) and at least one of the mantissa bits is on 1 (set).

This is one of the reserved bitpatterns of the special values of: Denormalized.

Denormalized numbers are too small to be correctly represented so they approximate to zero. Depending on the sign bit, -0 and +0 are two distinct values though they both compare as equal (0).

3. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

000 0000 0000(2) =


0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0(10)

4. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 0 - 1023 = -1023


5. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 003 725 290 298 461 914 062 5 =


0.000 000 376 254 320 144 653 320 312 5(10)

6. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.000 000 376 254 320 144 653 320 312 5) × 2-1023 =


1.000 000 376 254 320 144 653 320 312 5 × 2-1023 =


0

Conclusion:

0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

0(10)

More operations of this kind:

0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0110 0100 1111 1111 1111 1111 1111 1111 = ?

0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0001 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0110 0101 0000 0000 0000 0000 0000 0000 = 0 Oct 21 07:57 UTC (GMT)
1 - 100 0000 0101 - 1011 1110 0111 1011 0110 0111 1010 1100 1011 0101 1110 0001 1010 = -111.620 512 674 904 972 527 656 354 941 427 707 672 119 140 625 Oct 21 07:57 UTC (GMT)
1 - 100 0000 0111 - 1000 0000 1110 0111 1010 0011 1111 1100 0010 0101 0000 1010 1110 = -384.904 845 961 612 295 468 512 456 864 118 576 049 804 687 5 Oct 21 07:55 UTC (GMT)
0 - 010 0000 1010 - 1001 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 240 456 905 173 894 665 403 700 721 770 524 986 917 017 442 275 517 118 271 313 751 062 570 415 134 660 614 151 142 278 466 509 792 380 375 134 088 968 155 910 858 026 353 790 063 757 774 073 954 106 048 810 3 Oct 21 07:50 UTC (GMT)
0 - 100 0110 1000 - 0110 0101 0000 0000 0000 0100 0111 0011 1010 0010 1110 0000 0000 = 56 568 918 798 744 611 900 853 063 778 304 Oct 21 07:49 UTC (GMT)
0 - 100 0000 1001 - 1110 1010 1011 0000 1111 1010 1010 1100 1101 1001 1110 1000 0100 = 1 962.765 300 000 000 024 738 255 888 223 648 071 289 062 5 Oct 21 07:48 UTC (GMT)
1 - 100 0000 0101 - 0110 1001 1010 0001 1001 1011 0110 1111 1110 1011 0001 0101 1100 = -90.407 819 508 288 810 084 195 574 745 535 850 524 902 343 75 Oct 21 07:48 UTC (GMT)
0 - 110 0000 0000 - 1110 1101 1100 1100 1100 1100 0000 0000 0000 0000 0000 0000 0001 = 51 724 807 751 063 475 118 032 829 769 100 412 820 446 206 338 661 438 766 957 020 240 706 726 960 683 552 913 664 530 914 575 415 202 986 227 087 996 071 304 497 671 661 592 501 420 150 450 941 711 089 664 Oct 21 07:47 UTC (GMT)
0 - 100 0000 0010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 = 10.000 000 000 000 005 329 070 518 200 751 394 033 432 006 835 937 5 Oct 21 07:44 UTC (GMT)
0 - 100 1010 1000 - 1000 0101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 1 137 048 273 843 442 470 362 466 799 853 268 189 292 315 518 435 328 Oct 21 07:43 UTC (GMT)
0 - 100 0001 0001 - 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = 294 912.000 000 000 058 207 660 913 467 407 226 562 5 Oct 21 07:42 UTC (GMT)
1 - 100 0010 0010 - 0011 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = -41 607 495 680.000 007 629 394 531 25 Oct 21 07:40 UTC (GMT)
0 - 011 1111 1110 - 1101 0000 0101 0101 0010 0111 1011 0110 1110 0100 0011 1101 0001 = 0.906 899 682 117 108 807 410 943 427 385 063 841 938 972 473 144 531 25 Oct 21 07:39 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)