1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1111 0110
The last 23 bits contain the mantissa:
111 1100 1000 1101 1110 0011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1111 0110(2) =
1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 64 + 32 + 16 + 0 + 4 + 2 + 0 =
128 + 64 + 32 + 16 + 4 + 2 =
246(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 246 - 127 = 119
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 1100 1000 1101 1110 0011(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0 + 0 + 0.003 906 25 + 0 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.003 906 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.973 080 039 024 353 027 343 75(10)
= -1 311 336 612 897 782 185 924 095 371 871 518 720
1 - 1111 0110 - 111 1100 1000 1101 1110 0011 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = -1 311 336 612 897 782 185 924 095 371 871 518 720(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.