Binary ↘ Float: The 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation Number 1 - 1000 0111 - 110 0100 0000 0000 0101 1110 Converted and Written as a Base Ten Decimal System Number (as a Float)
1 - 1000 0111 - 110 0100 0000 0000 0101 1110: 32 bit single precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0111
The last 23 bits contain the mantissa:
110 0100 0000 0000 0101 1110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0111(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 0 + 4 + 2 + 1 =
128 + 4 + 2 + 1 =
135(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 135 - 127 = 8
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
110 0100 0000 0000 0101 1110(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0 + 0 + 0.031 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 007 629 394 531 25 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 =
0.5 + 0.25 + 0.031 25 + 0.000 007 629 394 531 25 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 =
0.781 261 205 673 217 773 437 5(10)
5. Put all the numbers into expression to calculate the single precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.781 261 205 673 217 773 437 5) × 28 =
-1.781 261 205 673 217 773 437 5 × 28 =
-456.002 868 652 343 75
1 - 1000 0111 - 110 0100 0000 0000 0101 1110 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = -456.002 868 652 343 75(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 32 bit single precision IEEE 754 binary floating point standard representation numbers: