1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0100
The last 23 bits contain the mantissa:
100 1100 0111 1010 1111 1010
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0100(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 4 + 0 + 0 =
128 + 4 =
132(10)
2. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 132 - 127 = 5
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
100 1100 0111 1010 1111 1010(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0 + 0.062 5 + 0.031 25 + 0 + 0 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 =
0.5 + 0.062 5 + 0.031 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 =
0.597 502 946 853 637 695 312 5(10)
= -51.120 094 299 316 406 25
1 - 1000 0100 - 100 1100 0111 1010 1111 1010 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = -51.120 094 299 316 406 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.