Binary ↘ Float: The 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation Number 1 - 1000 0010 - 001 0000 0000 0000 0001 0001 Converted and Written as a Base Ten Decimal System Number (as a Float)
1 - 1000 0010 - 001 0000 0000 0000 0001 0001: 32 bit single precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0010
The last 23 bits contain the mantissa:
001 0000 0000 0000 0001 0001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0010(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 2 + 0 =
128 + 2 =
130(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 130 - 127 = 3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
001 0000 0000 0000 0001 0001(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0 + 0 + 0.125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 =
0.125 + 0.000 001 907 348 632 812 5 + 0.000 000 119 209 289 550 781 25 =
0.125 002 026 557 922 363 281 25(10)
5. Put all the numbers into expression to calculate the single precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.125 002 026 557 922 363 281 25) × 23 =
-1.125 002 026 557 922 363 281 25 × 23 =
-9.000 016 212 463 378 906 25
1 - 1000 0010 - 001 0000 0000 0000 0001 0001 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = -9.000 016 212 463 378 906 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 32 bit single precision IEEE 754 binary floating point standard representation numbers: