Binary ↘ Float: The 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation Number 1 - 1000 0000 - 101 1111 1001 1111 1110 0011 Converted and Written as a Base Ten Decimal System Number (as a Float)
1 - 1000 0000 - 101 1111 1001 1111 1110 0011: 32 bit single precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0000
The last 23 bits contain the mantissa:
101 1111 1001 1111 1110 0011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0000(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
128 =
128(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 128 - 127 = 1
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 1111 1001 1111 1110 0011(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.747 066 855 430 603 027 343 75(10)
5. Put all the numbers into expression to calculate the single precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.747 066 855 430 603 027 343 75) × 21 =
-1.747 066 855 430 603 027 343 75 × 21 =
-3.494 133 710 861 206 054 687 5
1 - 1000 0000 - 101 1111 1001 1111 1110 0011 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = -3.494 133 710 861 206 054 687 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 32 bit single precision IEEE 754 binary floating point standard representation numbers: