The 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation Number 1 - 1000 0000 - 010 1001 0011 1111 1111 1110 Converted and Written as a Base Ten Decimal System Number (Float)

1 - 1000 0000 - 010 1001 0011 1111 1111 1110: 32 bit single precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

The steps we'll go through to make the conversion:

Convert the exponent from binary (from base 2) to decimal (in base 10).

Adjust the exponent.

Convert the mantissa from binary (from base 2) to decimal (in base 10).

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1


The next 8 bits contain the exponent:
1000 0000


The last 23 bits contain the mantissa:
010 1001 0011 1111 1111 1110


2. Convert the exponent from binary (from base 2) to decimal (in base 10).

The exponent is allways a positive integer.

1000 0000(2) =


1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


128 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


128 =


128(10)

3. Adjust the exponent.

Subtract the excess bits: 2(8 - 1) - 1 = 127,

that is due to the 8 bit excess/bias notation.


The exponent, adjusted = 128 - 127 = 1


4. Convert the mantissa from binary (from base 2) to decimal (in base 10).

The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).


010 1001 0011 1111 1111 1110(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 =


0 + 0.25 + 0 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 =


0.25 + 0.062 5 + 0.007 812 5 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 =


0.322 265 386 581 420 898 437 5(10)

5. Put all the numbers into expression to calculate the single precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =


(-1)1 × (1 + 0.322 265 386 581 420 898 437 5) × 21 =


-1.322 265 386 581 420 898 437 5 × 21 =


-2.644 530 773 162 841 796 875

1 - 1000 0000 - 010 1001 0011 1111 1111 1110 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = -2.644 530 773 162 841 796 875(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

Number 1 - 1000 0000 - 010 1001 0011 1111 1111 1101 converted from 32 bit single precision IEEE 754 binary floating point standard representation to decimal system written in base ten (float) = ?

Number 1 - 1000 0000 - 010 1001 0011 1111 1111 1111 converted from 32 bit single precision IEEE 754 binary floating point standard representation to decimal system written in base ten (float) = ?

Convert 32 bit single precision IEEE 754 binary floating point standard numbers to base ten decimal system (float)



A number in 32 bit single precision IEEE 754 binary floating point standard representation...

... requires three building elements: the sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), the exponent (8 bits) and the mantissa (23 bits)

The latest 32 bit single precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, float)

The number 1 - 1000 0000 - 010 1001 0011 1111 1111 1110 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1000 0010 - 001 1100 0110 0110 0101 1111 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1110 1111 - 000 0000 0111 1000 0000 1100 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1000 0011 - 110 0101 1111 1111 1111 1000 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1000 1010 - 100 0000 0000 0111 0000 1110 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 0 - 1000 0101 - 110 1110 1001 1111 1111 1110 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1001 0110 - 100 1000 0000 0000 0000 0110 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1000 0100 - 111 1011 1111 1111 1111 0101 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 1 - 1000 0100 - 100 1100 0100 0011 1111 0011 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
The number 0 - 1000 1010 - 000 0000 0000 1000 0000 0000 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 13:53 UTC (GMT)
All 32 bit single precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (float)

How to convert numbers from 32 bit single precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 32 bit single precision IEEE 754 binary floating point representation to base 10 decimal system:

Example: convert the number 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 from 32 bit single precision IEEE 754 binary floating point system to base 10 decimal system (float):

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal