1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1010 1010
The last 23 bits contain the mantissa:
111 0101 0101 0011 0111 0000
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1010 1010(2) =
1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 32 + 0 + 8 + 0 + 2 + 0 =
128 + 32 + 8 + 2 =
170(10)
2. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 170 - 127 = 43
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 0101 0101 0011 0111 0000(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0.125 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0 + 0 =
0.5 + 0.25 + 0.125 + 0.031 25 + 0.007 812 5 + 0.001 953 125 + 0.000 488 281 25 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 =
0.916 608 810 424 804 687 5(10)
= 16 858 669 383 680
0 - 1010 1010 - 111 0101 0101 0011 0111 0000 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = 16 858 669 383 680(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.