32 Bit IEEE 754 Binary to Float: Convert 0 - 1000 1000 - 011 1000 0001 1111 1111 0110, Number Written in 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Float
0 - 1000 1000 - 011 1000 0001 1111 1111 0110: 32 bit single precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system float
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 1000
The last 23 bits contain the mantissa:
011 1000 0001 1111 1111 0110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 1000(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 8 + 0 + 0 + 0 =
128 + 8 =
136(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 136 - 127 = 9
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
011 1000 0001 1111 1111 0110(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0 + 0.25 + 0.125 + 0.062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 =
0.25 + 0.125 + 0.062 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 =
0.438 475 370 407 104 492 187 5(10)
5. Put all the numbers into expression to calculate the single precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.438 475 370 407 104 492 187 5) × 29 =
1.438 475 370 407 104 492 187 5 × 29 =
736.499 389 648 437 5
0 - 1000 1000 - 011 1000 0001 1111 1111 0110 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = 736.499 389 648 437 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.