The 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 0111 1000 - 101 1001 1111 1111 1111 0101 Converted and Written as a Base Ten Decimal System Number (Float)

0 - 0111 1000 - 101 1001 1111 1111 1111 0101: 32 bit single precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

The steps we'll go through to make the conversion:

Convert the exponent from binary (from base 2) to decimal (in base 10).

Adjust the exponent.

Convert the mantissa from binary (from base 2) to decimal (in base 10).

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0


The next 8 bits contain the exponent:
0111 1000


The last 23 bits contain the mantissa:
101 1001 1111 1111 1111 0101


2. Convert the exponent from binary (from base 2) to decimal (in base 10).

The exponent is allways a positive integer.

0111 1000(2) =


0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 64 + 32 + 16 + 8 + 0 + 0 + 0 =


64 + 32 + 16 + 8 =


120(10)

3. Adjust the exponent.

Subtract the excess bits: 2(8 - 1) - 1 = 127,

that is due to the 8 bit excess/bias notation.


The exponent, adjusted = 120 - 127 = -7


4. Convert the mantissa from binary (from base 2) to decimal (in base 10).

The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).


101 1001 1111 1111 1111 0101(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 =


0.5 + 0 + 0.125 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0.000 000 119 209 289 550 781 25 =


0.5 + 0.125 + 0.062 5 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 + 0.000 000 119 209 289 550 781 25 =


0.703 123 688 697 814 941 406 25(10)

5. Put all the numbers into expression to calculate the single precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =


(-1)0 × (1 + 0.703 123 688 697 814 941 406 25) × 2-7 =


1.703 123 688 697 814 941 406 25 × 2-7 =


0.013 305 653 817 951 679 229 736 328 125

0 - 0111 1000 - 101 1001 1111 1111 1111 0101 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = 0.013 305 653 817 951 679 229 736 328 125(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

Number 0 - 0111 1000 - 101 1001 1111 1111 1111 0100 converted from 32 bit single precision IEEE 754 binary floating point standard representation to decimal system written in base ten (float) = ?

Number 0 - 0111 1000 - 101 1001 1111 1111 1111 0110 converted from 32 bit single precision IEEE 754 binary floating point standard representation to decimal system written in base ten (float) = ?

Convert 32 bit single precision IEEE 754 binary floating point standard numbers to base ten decimal system (float)



A number in 32 bit single precision IEEE 754 binary floating point standard representation...

... requires three building elements: the sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), the exponent (8 bits) and the mantissa (23 bits)

The latest 32 bit single precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, float)

The number 0 - 0111 1000 - 101 1001 1111 1111 1111 0101 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 0 - 1000 0110 - 100 0101 0010 0010 0001 0111 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 0 - 1001 1100 - 100 0000 0000 0000 0000 0100 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 0 - 0111 1011 - 101 0110 1110 1110 0001 0110 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 0 - 1111 1001 - 111 0110 0100 1001 1010 0100 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 0 - 1100 0001 - 110 1111 1111 1111 1111 1011 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 1 - 1100 0100 - 100 0010 0000 0110 0011 0110 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 1 - 1110 0010 - 010 1011 1111 1111 1111 0000 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 0 - 0111 1011 - 001 0010 1110 0001 0001 0010 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:25 UTC (GMT)
The number 1 - 0011 0000 - 101 1111 1111 1111 1111 0111 converted from 32 bit single precision IEEE 754 binary floating point system and written as a decimal number (float) written in base ten = ? Oct 03 14:24 UTC (GMT)
All 32 bit single precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (float)

How to convert numbers from 32 bit single precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 32 bit single precision IEEE 754 binary floating point representation to base 10 decimal system:

Example: convert the number 1 - 1000 0001 - 100 0001 0000 0010 0000 0000 from 32 bit single precision IEEE 754 binary floating point system to base 10 decimal system (float):

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal