32 Bit IEEE 754 Binary to Float: Convert 0 - 0111 0111 - 100 1100 0100 1110 0111 0000, Number Written in 32 Bit Single Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Float
0 - 0111 0111 - 100 1100 0100 1110 0111 0000: 32 bit single precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system float
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0111 0111
The last 23 bits contain the mantissa:
100 1100 0100 1110 0111 0000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0111 0111(2) =
0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
0 + 64 + 32 + 16 + 0 + 4 + 2 + 1 =
64 + 32 + 16 + 4 + 2 + 1 =
119(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 119 - 127 = -8
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
100 1100 0100 1110 0111 0000(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0 + 0.062 5 + 0.031 25 + 0 + 0 + 0 + 0.001 953 125 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0 + 0 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0 + 0 =
0.5 + 0.062 5 + 0.031 25 + 0.001 953 125 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 =
0.596 143 722 534 179 687 5(10)
5. Put all the numbers into expression to calculate the single precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.596 143 722 534 179 687 5) × 2-8 =
1.596 143 722 534 179 687 5 × 2-8 =
0.006 234 936 416 149 139 404 296 875
0 - 0111 0111 - 100 1100 0100 1110 0111 0000 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = 0.006 234 936 416 149 139 404 296 875(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.