1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0100 0010
The last 23 bits contain the mantissa:
010 0110 0000 0000 0001 0011
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0100 0010(2) =
0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
0 + 64 + 0 + 0 + 0 + 0 + 2 + 0 =
64 + 2 =
66(10)
2. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 66 - 127 = -61
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
010 0110 0000 0000 0001 0011(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0 + 0.25 + 0 + 0 + 0.031 25 + 0.015 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.25 + 0.031 25 + 0.015 625 + 0.000 001 907 348 632 812 5 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.296 877 264 976 501 464 843 75(10)
= 0.000 000 000 000 000 000 562 430 859 253 832 831 85
0 - 0100 0010 - 010 0110 0000 0000 0001 0011 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = 0.000 000 000 000 000 000 562 430 859 253 832 831 85(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.