1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
0000 0000
The last 23 bits contain the mantissa:
000 0000 0100 0000 0010 1100
1. Reserved bitpattern.
Notice that all the bits that make up the exponent are on 0 (clear) and at least one bit of the mantissa is set on 1 (set).
This is one of the reserved bitpatterns of the special values of: Denormalized.
Denormalized numbers are too small to be correctly represented so they approximate to zero.
Depending on the sign bit, -0 and +0 are two distinct values though they both compare as equal (0).
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
0000 0000(2) =
0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0(10)
2. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 0 - 127 = -127
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
000 0000 0100 0000 0010 1100(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0 =
0.001 953 125 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 =
0.001 958 370 208 740 234 375(10)
= 0
0 - 0000 0000 - 000 0000 0100 0000 0010 1100 converted from a 32 bit single precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (float) = 0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.