64bit IEEE 754: Decimal ↗ Double Precision Floating Point Binary: 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 Convert the Number to 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, From a Base Ten Decimal System Number

Number 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5(10) converted and written in 64 bit double precision IEEE 754 binary floating point representation (1 bit for sign, 11 bits for exponent, 52 bits for mantissa)

1. First, convert to binary (in base 2) the integer part: 0.
Divide the number repeatedly by 2.

Keep track of each remainder.

We stop when we get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 0 ÷ 2 = 0 + 0;

2. Construct the base 2 representation of the integer part of the number.

Take all the remainders starting from the bottom of the list constructed above.


0(10) =


0(2)


3. Convert to binary (base 2) the fractional part: 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5.

Multiply it repeatedly by 2.


Keep track of each integer part of the results.


Stop when we get a fractional part that is equal to zero.


  • #) multiplying = integer + fractional part;
  • 1) 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 × 2 = 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125;
  • 2) 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 × 2 = 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25;
  • 3) 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 × 2 = 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5;
  • 4) 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 × 2 = 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625;
  • 5) 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 × 2 = 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25;
  • 6) 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 × 2 = 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5;
  • 7) 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 × 2 = 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125;
  • 8) 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 × 2 = 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25;
  • 9) 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 × 2 = 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5;
  • 10) 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 × 2 = 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625;
  • 11) 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 × 2 = 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25;
  • 12) 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 × 2 = 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5;
  • 13) 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 × 2 = 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125;
  • 14) 0.000 000 000 001 818 989 403 545 856 475 830 078 125 × 2 = 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25;
  • 15) 0.000 000 000 003 637 978 807 091 712 951 660 156 25 × 2 = 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5;
  • 16) 0.000 000 000 007 275 957 614 183 425 903 320 312 5 × 2 = 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625;
  • 17) 0.000 000 000 014 551 915 228 366 851 806 640 625 × 2 = 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25;
  • 18) 0.000 000 000 029 103 830 456 733 703 613 281 25 × 2 = 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5;
  • 19) 0.000 000 000 058 207 660 913 467 407 226 562 5 × 2 = 0 + 0.000 000 000 116 415 321 826 934 814 453 125;
  • 20) 0.000 000 000 116 415 321 826 934 814 453 125 × 2 = 0 + 0.000 000 000 232 830 643 653 869 628 906 25;
  • 21) 0.000 000 000 232 830 643 653 869 628 906 25 × 2 = 0 + 0.000 000 000 465 661 287 307 739 257 812 5;
  • 22) 0.000 000 000 465 661 287 307 739 257 812 5 × 2 = 0 + 0.000 000 000 931 322 574 615 478 515 625;
  • 23) 0.000 000 000 931 322 574 615 478 515 625 × 2 = 0 + 0.000 000 001 862 645 149 230 957 031 25;
  • 24) 0.000 000 001 862 645 149 230 957 031 25 × 2 = 0 + 0.000 000 003 725 290 298 461 914 062 5;
  • 25) 0.000 000 003 725 290 298 461 914 062 5 × 2 = 0 + 0.000 000 007 450 580 596 923 828 125;
  • 26) 0.000 000 007 450 580 596 923 828 125 × 2 = 0 + 0.000 000 014 901 161 193 847 656 25;
  • 27) 0.000 000 014 901 161 193 847 656 25 × 2 = 0 + 0.000 000 029 802 322 387 695 312 5;
  • 28) 0.000 000 029 802 322 387 695 312 5 × 2 = 0 + 0.000 000 059 604 644 775 390 625;
  • 29) 0.000 000 059 604 644 775 390 625 × 2 = 0 + 0.000 000 119 209 289 550 781 25;
  • 30) 0.000 000 119 209 289 550 781 25 × 2 = 0 + 0.000 000 238 418 579 101 562 5;
  • 31) 0.000 000 238 418 579 101 562 5 × 2 = 0 + 0.000 000 476 837 158 203 125;
  • 32) 0.000 000 476 837 158 203 125 × 2 = 0 + 0.000 000 953 674 316 406 25;
  • 33) 0.000 000 953 674 316 406 25 × 2 = 0 + 0.000 001 907 348 632 812 5;
  • 34) 0.000 001 907 348 632 812 5 × 2 = 0 + 0.000 003 814 697 265 625;
  • 35) 0.000 003 814 697 265 625 × 2 = 0 + 0.000 007 629 394 531 25;
  • 36) 0.000 007 629 394 531 25 × 2 = 0 + 0.000 015 258 789 062 5;
  • 37) 0.000 015 258 789 062 5 × 2 = 0 + 0.000 030 517 578 125;
  • 38) 0.000 030 517 578 125 × 2 = 0 + 0.000 061 035 156 25;
  • 39) 0.000 061 035 156 25 × 2 = 0 + 0.000 122 070 312 5;
  • 40) 0.000 122 070 312 5 × 2 = 0 + 0.000 244 140 625;
  • 41) 0.000 244 140 625 × 2 = 0 + 0.000 488 281 25;
  • 42) 0.000 488 281 25 × 2 = 0 + 0.000 976 562 5;
  • 43) 0.000 976 562 5 × 2 = 0 + 0.001 953 125;
  • 44) 0.001 953 125 × 2 = 0 + 0.003 906 25;
  • 45) 0.003 906 25 × 2 = 0 + 0.007 812 5;
  • 46) 0.007 812 5 × 2 = 0 + 0.015 625;
  • 47) 0.015 625 × 2 = 0 + 0.031 25;
  • 48) 0.031 25 × 2 = 0 + 0.062 5;
  • 49) 0.062 5 × 2 = 0 + 0.125;
  • 50) 0.125 × 2 = 0 + 0.25;
  • 51) 0.25 × 2 = 0 + 0.5;
  • 52) 0.5 × 2 = 1 + 0;

4. Construct the base 2 representation of the fractional part of the number.

Take all the integer parts of the multiplying operations, starting from the top of the constructed list above:


0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001(2)


5. Positive number before normalization:

0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001(2)

6. Normalize the binary representation of the number.

Shift the decimal mark 52 positions to the right, so that only one non zero digit remains to the left of it:


0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5(10) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001(2) =


0.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001(2) × 20 =


1(2) × 2-52


7. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

Sign 0 (a positive number)


Exponent (unadjusted): -52


Mantissa (not normalized):
1


8. Adjust the exponent.

Use the 11 bit excess/bias notation:


Exponent (adjusted) =


Exponent (unadjusted) + 2(11-1) - 1 =


-52 + 2(11-1) - 1 =


(-52 + 1 023)(10) =


971(10)


9. Convert the adjusted exponent from the decimal (base 10) to 11 bit binary.

Use the same technique of repeatedly dividing by 2:


  • division = quotient + remainder;
  • 971 ÷ 2 = 485 + 1;
  • 485 ÷ 2 = 242 + 1;
  • 242 ÷ 2 = 121 + 0;
  • 121 ÷ 2 = 60 + 1;
  • 60 ÷ 2 = 30 + 0;
  • 30 ÷ 2 = 15 + 0;
  • 15 ÷ 2 = 7 + 1;
  • 7 ÷ 2 = 3 + 1;
  • 3 ÷ 2 = 1 + 1;
  • 1 ÷ 2 = 0 + 1;

10. Construct the base 2 representation of the adjusted exponent.

Take all the remainders starting from the bottom of the list constructed above.


Exponent (adjusted) =


971(10) =


011 1100 1011(2)


11. Normalize the mantissa.

a) Remove the leading (the leftmost) bit, since it's allways 1, and the decimal point, if the case.


b) Adjust its length to 52 bits, by adding the necessary number of zeros to the right.


Mantissa (normalized) =


1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 =


0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


12. The three elements that make up the number's 64 bit double precision IEEE 754 binary floating point representation:

Sign (1 bit) =
0 (a positive number)


Exponent (11 bits) =
011 1100 1011


Mantissa (52 bits) =
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000


The base ten decimal number 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 converted and written in 64 bit double precision IEEE 754 binary floating point representation:
0 - 011 1100 1011 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

The latest decimal numbers converted from base ten to 64 bit double precision IEEE 754 floating point binary standard representation

Number 3 417.968 7 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 10 000.555 555 555 555 555 555 468 545 468 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 18 446 744 039 000 860 366 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 11 000 000 110 110 011 001 100 110 011 010 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 2 211 120 111 120 000 241 012 200 971 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 362 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number -1.833 2 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 1 100 100 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 140 737 488 486 347 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
Number 1 100 000 010 101 001 001 099 999 999 999 999 999 999 999 999 999 999 999 999 999 955 converted from decimal system (written in base ten) to 64 bit double precision IEEE 754 binary floating point representation standard Apr 19 21:56 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point standard

Follow the steps below to convert a base 10 decimal number to 64 bit double precision IEEE 754 binary floating point:

  • 1. If the number to be converted is negative, start with its the positive version.
  • 2. First convert the integer part. Divide repeatedly by 2 the positive representation of the integer number that is to be converted to binary, until we get a quotient that is equal to zero, keeping track of each remainder.
  • 3. Construct the base 2 representation of the positive integer part of the number, by taking all the remainders from the previous operations, starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).
  • 4. Then convert the fractional part. Multiply the number repeatedly by 2, until we get a fractional part that is equal to zero, keeping track of each integer part of the results.
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the multiplying operations, starting from the top of the list constructed above (they should appear in the binary representation, from left to right, in the order they have been calculated).
  • 6. Normalize the binary representation of the number, shifting the decimal mark (the decimal point) "n" positions either to the left, or to the right, so that only one non zero digit remains to the left of the decimal mark.
  • 7. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary, by using the same technique of repeatedly dividing by 2, as shown above:
    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1
  • 8. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal mark, if the case) and adjust its length to 52 bits, either by removing the excess bits from the right (losing precision...) or by adding extra bits set on '0' to the right.
  • 9. Sign (it takes 1 bit) is either 1 for a negative or 0 for a positive number.

Example: convert the negative number -31.640 215 from the decimal system (base ten) to 64 bit double precision IEEE 754 binary floating point:

  • 1. Start with the positive version of the number:

    |-31.640 215| = 31.640 215

  • 2. First convert the integer part, 31. Divide it repeatedly by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 31 ÷ 2 = 15 + 1;
    • 15 ÷ 2 = 7 + 1;
    • 7 ÷ 2 = 3 + 1;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
    • We have encountered a quotient that is ZERO => FULL STOP
  • 3. Construct the base 2 representation of the integer part of the number by taking all the remainders of the previous dividing operations, starting from the bottom of the list constructed above:

    31(10) = 1 1111(2)

  • 4. Then, convert the fractional part, 0.640 215. Multiply repeatedly by 2, keeping track of each integer part of the results, until we get a fractional part that is equal to zero:
    • #) multiplying = integer + fractional part;
    • 1) 0.640 215 × 2 = 1 + 0.280 43;
    • 2) 0.280 43 × 2 = 0 + 0.560 86;
    • 3) 0.560 86 × 2 = 1 + 0.121 72;
    • 4) 0.121 72 × 2 = 0 + 0.243 44;
    • 5) 0.243 44 × 2 = 0 + 0.486 88;
    • 6) 0.486 88 × 2 = 0 + 0.973 76;
    • 7) 0.973 76 × 2 = 1 + 0.947 52;
    • 8) 0.947 52 × 2 = 1 + 0.895 04;
    • 9) 0.895 04 × 2 = 1 + 0.790 08;
    • 10) 0.790 08 × 2 = 1 + 0.580 16;
    • 11) 0.580 16 × 2 = 1 + 0.160 32;
    • 12) 0.160 32 × 2 = 0 + 0.320 64;
    • 13) 0.320 64 × 2 = 0 + 0.641 28;
    • 14) 0.641 28 × 2 = 1 + 0.282 56;
    • 15) 0.282 56 × 2 = 0 + 0.565 12;
    • 16) 0.565 12 × 2 = 1 + 0.130 24;
    • 17) 0.130 24 × 2 = 0 + 0.260 48;
    • 18) 0.260 48 × 2 = 0 + 0.520 96;
    • 19) 0.520 96 × 2 = 1 + 0.041 92;
    • 20) 0.041 92 × 2 = 0 + 0.083 84;
    • 21) 0.083 84 × 2 = 0 + 0.167 68;
    • 22) 0.167 68 × 2 = 0 + 0.335 36;
    • 23) 0.335 36 × 2 = 0 + 0.670 72;
    • 24) 0.670 72 × 2 = 1 + 0.341 44;
    • 25) 0.341 44 × 2 = 0 + 0.682 88;
    • 26) 0.682 88 × 2 = 1 + 0.365 76;
    • 27) 0.365 76 × 2 = 0 + 0.731 52;
    • 28) 0.731 52 × 2 = 1 + 0.463 04;
    • 29) 0.463 04 × 2 = 0 + 0.926 08;
    • 30) 0.926 08 × 2 = 1 + 0.852 16;
    • 31) 0.852 16 × 2 = 1 + 0.704 32;
    • 32) 0.704 32 × 2 = 1 + 0.408 64;
    • 33) 0.408 64 × 2 = 0 + 0.817 28;
    • 34) 0.817 28 × 2 = 1 + 0.634 56;
    • 35) 0.634 56 × 2 = 1 + 0.269 12;
    • 36) 0.269 12 × 2 = 0 + 0.538 24;
    • 37) 0.538 24 × 2 = 1 + 0.076 48;
    • 38) 0.076 48 × 2 = 0 + 0.152 96;
    • 39) 0.152 96 × 2 = 0 + 0.305 92;
    • 40) 0.305 92 × 2 = 0 + 0.611 84;
    • 41) 0.611 84 × 2 = 1 + 0.223 68;
    • 42) 0.223 68 × 2 = 0 + 0.447 36;
    • 43) 0.447 36 × 2 = 0 + 0.894 72;
    • 44) 0.894 72 × 2 = 1 + 0.789 44;
    • 45) 0.789 44 × 2 = 1 + 0.578 88;
    • 46) 0.578 88 × 2 = 1 + 0.157 76;
    • 47) 0.157 76 × 2 = 0 + 0.315 52;
    • 48) 0.315 52 × 2 = 0 + 0.631 04;
    • 49) 0.631 04 × 2 = 1 + 0.262 08;
    • 50) 0.262 08 × 2 = 0 + 0.524 16;
    • 51) 0.524 16 × 2 = 1 + 0.048 32;
    • 52) 0.048 32 × 2 = 0 + 0.096 64;
    • 53) 0.096 64 × 2 = 0 + 0.193 28;
    • We didn't get any fractional part that was equal to zero. But we had enough iterations (over Mantissa limit = 52) and at least one integer part that was different from zero => FULL STOP (losing precision...).
  • 5. Construct the base 2 representation of the fractional part of the number, by taking all the integer parts of the previous multiplying operations, starting from the top of the constructed list above:

    0.640 215(10) = 0.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 6. Summarizing - the positive number before normalization:

    31.640 215(10) = 1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2)

  • 7. Normalize the binary representation of the number, shifting the decimal mark 4 positions to the left so that only one non-zero digit stays to the left of the decimal mark:

    31.640 215(10) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) =
    1 1111.1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 20 =
    1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0(2) × 24

  • 8. Up to this moment, there are the following elements that would feed into the 64 bit double precision IEEE 754 binary floating point representation:

    Sign: 1 (a negative number)

    Exponent (unadjusted): 4

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

  • 9. Adjust the exponent in 11 bit excess/bias notation and then convert it from decimal (base 10) to 11 bit binary (base 2), by using the same technique of repeatedly dividing it by 2, as shown above:

    Exponent (adjusted) = Exponent (unadjusted) + 2(11-1) - 1 = (4 + 1023)(10) = 1027(10) =
    100 0000 0011(2)

  • 10. Normalize mantissa, remove the leading (leftmost) bit, since it's allways '1' (and the decimal sign) and adjust its length to 52 bits, by removing the excess bits, from the right (losing precision...):

    Mantissa (not-normalized): 1.1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100 1010 0

    Mantissa (normalized): 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Conclusion:

    Sign (1 bit) = 1 (a negative number)

    Exponent (8 bits) = 100 0000 0011

    Mantissa (52 bits) = 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100

  • Number -31.640 215, converted from decimal system (base 10) to 64 bit double precision IEEE 754 binary floating point =
    1 - 100 0000 0011 - 1111 1010 0011 1110 0101 0010 0001 0101 0111 0110 1000 1001 1100