64 bit double precision IEEE 754 binary floating point number 1 - 011 1111 1001 - 0111 0110 1111 1011 0000 1001 0010 0000 0011 1010 0001 0010 0011 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 011 1111 1001 - 0111 0110 1111 1011 0000 1001 0010 0000 0011 1010 0001 0010 0011.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 1111 1001


The last 52 bits contain the mantissa:
0111 0110 1111 1011 0000 1001 0010 0000 0011 1010 0001 0010 0011

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

011 1111 1001(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 0 + 0 + 1 =


512 + 256 + 128 + 64 + 32 + 16 + 8 + 1 =


1,017(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,017 - 1023 = -6

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0111 0110 1111 1011 0000 1001 0010 0000 0011 1010 0001 0010 0011(2) =

0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0.25 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.25 + 0.125 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 000 476 837 158 203 125 + 0.000 000 059 604 644 775 390 625 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.464 767 999 999 886 383 122 316 146 909 724 920 988 082 885 742 187 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.464 767 999 999 886 383 122 316 146 909 724 920 988 082 885 742 187 5) × 2-6 =


-1.464 767 999 999 886 383 122 316 146 909 724 920 988 082 885 742 187 5 × 2-6 =


-0.022 886 999 999 998 224 736 286 189 795 464 451 890 438 795 089 721 679 687 5

1 - 011 1111 1001 - 0111 0110 1111 1011 0000 1001 0010 0000 0011 1010 0001 0010 0011
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


-0.022 886 999 999 998 224 736 286 189 795 464 451 890 438 795 089 721 679 687 5(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 011 1111 1001 - 0111 0110 1111 1011 0000 1001 0010 0000 0011 1010 0001 0010 0011 = -0.022 886 999 999 998 224 736 286 189 795 464 451 890 438 795 089 721 679 687 5 Feb 18 19:02 UTC (GMT)
1 - 011 0001 1110 - 1111 0110 0010 0110 0011 0000 0101 0111 0011 1000 0111 0000 1010 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 036 378 414 236 719 119 890 463 591 720 805 473 469 880 022 567 684 782 525 319 506 696 082 632 863 875 559 310 048 338 595 180 705 223 913 963 450 951 825 304 055 872 192 598 495 013 940 080 427 530 986 139 331 443 043 475 229 626 171 341 124 063 474 126 160 144 805 908 203 125 Feb 18 19:02 UTC (GMT)
0 - 000 0000 1000 - 0000 0001 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 002 8 Feb 18 19:01 UTC (GMT)
1 - 100 0000 1100 - 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -11 392 Feb 18 18:59 UTC (GMT)
1 - 100 0000 0101 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -112 Feb 18 18:58 UTC (GMT)
0 - 111 1111 1111 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = QNaN, Quiet Not a Number Feb 18 18:55 UTC (GMT)
1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8 Feb 18 18:52 UTC (GMT)
0 - 011 1111 1110 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.5 Feb 18 18:50 UTC (GMT)
0 - 100 0000 0000 - 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010 = 3.200 000 000 000 000 177 635 683 940 025 046 467 781 066 894 531 25 Feb 18 18:47 UTC (GMT)
0 - 100 0000 0101 - 0000 1001 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 = 66.299 999 999 999 997 157 829 056 959 599 256 515 502 929 687 5 Feb 18 18:46 UTC (GMT)
0 - 100 0000 1000 - 0001 1011 1000 0000 0000 0000 0000 0000 0000 0000 0001 0101 1100 = 567.000 000 000 039 563 019 527 122 378 349 304 199 218 75 Feb 18 18:39 UTC (GMT)
0 - 100 0111 1111 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 425 352 958 651 173 079 329 218 259 289 710 264 320 Feb 18 18:37 UTC (GMT)
0 - 100 0000 1010 - 1001 0010 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 3 223.999 999 999 999 545 252 649 113 535 881 042 480 468 75 Feb 18 18:35 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)