64 bit double precision IEEE 754 binary floating point number 0 - 101 1111 0000 - 0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 101 1111 0000 - 0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
101 1111 0000


The last 52 bits contain the mantissa:
0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

101 1111 0000(2) =


1 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


1,024 + 0 + 256 + 128 + 64 + 32 + 16 + 0 + 0 + 0 + 0 =


1,024 + 256 + 128 + 64 + 32 + 16 =


1,520(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,520 - 1023 = 497

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0.125 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.125 + 0.062 5 + 0.007 812 5 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 =


0.197 004 318 237 304 687 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.197 004 318 237 304 687 5) × 2497 =


1.197 004 318 237 304 687 5 × 2497 =


489 782 836 616 139 706 152 326 470 371 861 586 082 544 119 845 742 317 500 108 857 234 223 167 247 453 602 261 750 275 657 517 743 450 157 096 574 629 190 340 902 690 834 232 336 412 773 764 300 800

0 - 101 1111 0000 - 0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


489 782 836 616 139 706 152 326 470 371 861 586 082 544 119 845 742 317 500 108 857 234 223 167 247 453 602 261 750 275 657 517 743 450 157 096 574 629 190 340 902 690 834 232 336 412 773 764 300 800(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 101 1111 0000 - 0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000 = 489 782 836 616 139 706 152 326 470 371 861 586 082 544 119 845 742 317 500 108 857 234 223 167 247 453 602 261 750 275 657 517 743 450 157 096 574 629 190 340 902 690 834 232 336 412 773 764 300 800 Feb 18 18:08 UTC (GMT)
0 - 000 0111 1100 - 1111 1011 1001 1000 0100 1101 1110 0101 0110 1101 1000 0111 0011 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 469 149 454 531 217 288 000 759 332 228 665 481 9 Feb 18 18:06 UTC (GMT)
0 - 010 0000 1001 - 1110 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 145 064 727 221 844 021 157 009 275 385 754 063 136 972 371 347 977 914 093 581 031 580 862 114 589 613 801 031 008 601 618 288 320 775 381 400 683 326 012 173 268 877 561 452 132 136 746 455 905 935 566 047 1 Feb 18 18:04 UTC (GMT)
1 - 110 0111 0000 - 1100 1110 0110 1101 0110 1001 0111 0000 0110 1100 0110 0000 0000 = -251 507 461 953 386 280 736 218 316 609 508 574 047 564 154 508 843 656 823 902 915 254 598 824 652 444 485 314 535 797 006 410 895 449 674 025 459 757 522 896 931 676 011 522 072 113 315 884 600 208 879 354 078 237 115 819 128 207 515 087 854 895 104 Feb 18 18:03 UTC (GMT)
0 - 100 0000 0001 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 7 Feb 18 18:03 UTC (GMT)
0 - 100 0001 0101 - 0110 0000 0101 0110 0010 1011 0110 0111 1011 0100 1010 0111 0111 = 5 772 682.851 275 078 020 989 894 866 943 359 375 Feb 18 18:02 UTC (GMT)
0 - 100 0000 0000 - 1001 0010 0001 1111 1011 0101 0100 0100 0100 0010 1101 0001 1000 = 3.141 592 653 589 793 115 997 963 468 544 185 161 590 576 171 875 Feb 18 18:02 UTC (GMT)
0 - 000 0000 0100 - 0000 1110 0001 0111 1010 1001 0100 0011 1111 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 1 Feb 18 18:00 UTC (GMT)
0 - 110 0001 0010 - 0000 0100 1010 1110 0110 1100 0110 0100 0010 1101 1000 0100 0000 = 7 158 098 650 486 605 062 682 343 968 676 472 237 252 701 633 419 710 363 299 580 437 065 553 747 172 154 642 059 767 957 845 356 450 045 175 467 179 225 693 921 233 514 564 618 935 305 306 183 745 279 048 548 352 Feb 18 17:59 UTC (GMT)
1 - 100 0000 0000 - 0000 0100 0001 0011 0100 0000 0000 0010 0001 0000 0000 0000 0001 = -2.031 837 464 339 333 099 161 422 069 300 897 419 452 667 236 328 125 Feb 18 17:55 UTC (GMT)
0 - 010 1010 1010 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 297 652 966 479 759 093 428 968 129 014 091 244 167 004 192 463 335 935 058 503 802 265 688 306 186 257 855 387 638 170 475 959 682 640 363 887 489 262 206 377 761 917 947 529 042 340 123 504 878 208 170 227 199 962 259 237 393 437 510 558 163 101 712 331 796 655 512 791 9 Feb 18 17:53 UTC (GMT)
1 - 110 1011 1110 - 1011 1110 1011 1110 1011 1110 1011 1110 1011 1110 1011 1110 1011 = -73 435 622 782 400 813 686 143 151 113 110 365 575 435 840 418 095 255 275 297 506 064 069 659 137 818 951 812 398 040 764 533 185 524 715 064 856 092 106 547 425 013 440 122 109 769 664 608 675 607 646 651 085 489 240 444 353 012 735 852 259 223 372 053 716 078 873 457 780 064 256 Feb 18 17:50 UTC (GMT)
0 - 011 1111 1000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.007 812 5 Feb 18 17:47 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)