64 bit double precision IEEE 754 binary floating point number 0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0001 0111


The last 52 bits contain the mantissa:
1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0001 0111(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 16 + 0 + 4 + 2 + 1 =


1,024 + 16 + 4 + 2 + 1 =


1,047(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,047 - 1023 = 24

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 1 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0.5 + 0 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0.5 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.001 953 125 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0.737 030 248 092 313 211 571 990 905 213 169 753 551 483 154 296 875(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.737 030 248 092 313 211 571 990 905 213 169 753 551 483 154 296 875) × 224 =


1.737 030 248 092 313 211 571 990 905 213 169 753 551 483 154 296 875 × 224 =


29 142 531.670 778 326 690 196 990 966 796 875

0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


29 142 531.670 778 326 690 196 990 966 796 875(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110 = 29 142 531.670 778 326 690 196 990 966 796 875 May 20 05:36 UTC (GMT)
0 - 000 0011 0000 - 0010 0111 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 003 611 637 623 856 4 May 20 05:35 UTC (GMT)
0 - 011 1111 1110 - 1111 0000 0110 0101 1011 0111 1111 1111 1111 0101 1011 1101 1111 = 0.969 526 052 470 310 761 854 932 479 764 102 026 820 182 800 292 968 75 May 20 05:34 UTC (GMT)
1 - 000 1101 1000 - 0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 501 304 949 372 258 028 721 305 278 858 027 411 459 394 411 963 406 796 024 141 861 8 May 20 05:34 UTC (GMT)
0 - 100 0001 1011 - 0110 1001 1110 0101 0101 0001 0011 0100 1000 1111 1000 1111 0010 = 379 475 219.285 048 604 011 535 644 531 25 May 20 05:31 UTC (GMT)
1 - 100 0000 0001 - 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -6.125 May 20 05:30 UTC (GMT)
1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8 May 20 05:29 UTC (GMT)
0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0111 1111 0000 0000 0000 0000 0000 0000 = 0 May 20 05:29 UTC (GMT)
0 - 100 0001 1000 - 1111 1100 1000 0010 0100 0100 1011 1100 0011 1101 0110 1001 1000 = 66 651 273.470 624 148 845 672 607 421 875 May 20 05:29 UTC (GMT)
0 - 100 0001 0001 - 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 294 912 May 20 05:29 UTC (GMT)
0 - 100 0011 1000 - 1000 0010 1001 0101 0000 0100 0000 0000 0000 0000 0000 0000 0000 = 217 626 370 845 442 048 May 20 05:28 UTC (GMT)
1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 May 20 05:25 UTC (GMT)
0 - 100 0000 0111 - 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 344 May 20 05:23 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)