64 bit double precision IEEE 754 binary floating point number 0 - 100 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0000 0000


The last 52 bits contain the mantissa:
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0000 0000(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


1,024 =


1,024(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,024 - 1023 = 1

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010(2) =

0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125) × 21 =


1.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 × 21 =


2.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25

0 - 100 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


2.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 = 2.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 Feb 18 18:10 UTC (GMT)
0 - 100 0000 0000 - 0101 0010 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 2.642 578 125 Feb 18 18:10 UTC (GMT)
1 - 100 0100 1111 - 1001 0001 0101 1001 0101 0001 0101 0010 1010 1010 0001 1011 0101 = -1 895 316 579 786 387 326 238 720 Feb 18 18:10 UTC (GMT)
0 - 100 0100 0000 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 46 116 860 184 273 879 040 Feb 18 18:10 UTC (GMT)
0 - 010 1011 1000 - 1110 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 007 000 797 771 603 934 266 071 674 233 370 213 376 642 948 718 289 641 799 942 645 789 769 249 894 928 771 448 512 119 133 893 553 681 601 246 207 914 415 922 922 350 815 843 989 002 350 647 009 047 136 502 607 038 773 356 428 522 223 676 792 018 180 581 160 264 469 575 693 624 3 Feb 18 18:09 UTC (GMT)
0 - 101 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 13 407 807 929 942 597 099 574 024 998 205 846 127 479 365 820 592 393 377 723 561 443 721 764 030 073 546 976 801 874 298 166 903 427 690 031 858 186 486 050 853 753 882 811 946 569 946 433 649 006 084 096 Feb 18 18:09 UTC (GMT)
0 - 011 1111 1110 - 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100 = 0.600 000 000 000 000 088 817 841 970 012 523 233 890 533 447 265 625 Feb 18 18:08 UTC (GMT)
1 - 100 0000 0100 - 0010 0010 0110 0001 1101 1001 0110 1110 1001 1011 1011 1111 0001 = -36.297 778 000 000 000 986 347 004 072 740 674 018 859 863 281 25 Feb 18 18:08 UTC (GMT)
0 - 101 1111 0000 - 0011 0010 0110 1110 1110 0000 0000 0000 0000 0000 0000 0000 0000 = 489 782 836 616 139 706 152 326 470 371 861 586 082 544 119 845 742 317 500 108 857 234 223 167 247 453 602 261 750 275 657 517 743 450 157 096 574 629 190 340 902 690 834 232 336 412 773 764 300 800 Feb 18 18:08 UTC (GMT)
0 - 000 0111 1100 - 1111 1011 1001 1000 0100 1101 1110 0101 0110 1101 1000 0111 0011 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 469 149 454 531 217 288 000 759 332 228 665 481 9 Feb 18 18:06 UTC (GMT)
0 - 010 0000 1001 - 1110 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 145 064 727 221 844 021 157 009 275 385 754 063 136 972 371 347 977 914 093 581 031 580 862 114 589 613 801 031 008 601 618 288 320 775 381 400 683 326 012 173 268 877 561 452 132 136 746 455 905 935 566 047 1 Feb 18 18:04 UTC (GMT)
1 - 110 0111 0000 - 1100 1110 0110 1101 0110 1001 0111 0000 0110 1100 0110 0000 0000 = -251 507 461 953 386 280 736 218 316 609 508 574 047 564 154 508 843 656 823 902 915 254 598 824 652 444 485 314 535 797 006 410 895 449 674 025 459 757 522 896 931 676 011 522 072 113 315 884 600 208 879 354 078 237 115 819 128 207 515 087 854 895 104 Feb 18 18:03 UTC (GMT)
0 - 100 0000 0001 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 7 Feb 18 18:03 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)